Solve for x (complex solution)
x=\frac{-2+4\sqrt{6}i}{125}\approx -0.016+0.078383672i
x=\frac{-4\sqrt{6}i-2}{125}\approx -0.016-0.078383672i
Graph
Share
Copied to clipboard
25^{2}x^{2}+20x+4=0
Expand \left(25x\right)^{2}.
625x^{2}+20x+4=0
Calculate 25 to the power of 2 and get 625.
x=\frac{-20±\sqrt{20^{2}-4\times 625\times 4}}{2\times 625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 625 for a, 20 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 625\times 4}}{2\times 625}
Square 20.
x=\frac{-20±\sqrt{400-2500\times 4}}{2\times 625}
Multiply -4 times 625.
x=\frac{-20±\sqrt{400-10000}}{2\times 625}
Multiply -2500 times 4.
x=\frac{-20±\sqrt{-9600}}{2\times 625}
Add 400 to -10000.
x=\frac{-20±40\sqrt{6}i}{2\times 625}
Take the square root of -9600.
x=\frac{-20±40\sqrt{6}i}{1250}
Multiply 2 times 625.
x=\frac{-20+40\sqrt{6}i}{1250}
Now solve the equation x=\frac{-20±40\sqrt{6}i}{1250} when ± is plus. Add -20 to 40i\sqrt{6}.
x=\frac{-2+4\sqrt{6}i}{125}
Divide -20+40i\sqrt{6} by 1250.
x=\frac{-40\sqrt{6}i-20}{1250}
Now solve the equation x=\frac{-20±40\sqrt{6}i}{1250} when ± is minus. Subtract 40i\sqrt{6} from -20.
x=\frac{-4\sqrt{6}i-2}{125}
Divide -20-40i\sqrt{6} by 1250.
x=\frac{-2+4\sqrt{6}i}{125} x=\frac{-4\sqrt{6}i-2}{125}
The equation is now solved.
25^{2}x^{2}+20x+4=0
Expand \left(25x\right)^{2}.
625x^{2}+20x+4=0
Calculate 25 to the power of 2 and get 625.
625x^{2}+20x=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
\frac{625x^{2}+20x}{625}=-\frac{4}{625}
Divide both sides by 625.
x^{2}+\frac{20}{625}x=-\frac{4}{625}
Dividing by 625 undoes the multiplication by 625.
x^{2}+\frac{4}{125}x=-\frac{4}{625}
Reduce the fraction \frac{20}{625} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{4}{125}x+\left(\frac{2}{125}\right)^{2}=-\frac{4}{625}+\left(\frac{2}{125}\right)^{2}
Divide \frac{4}{125}, the coefficient of the x term, by 2 to get \frac{2}{125}. Then add the square of \frac{2}{125} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{125}x+\frac{4}{15625}=-\frac{4}{625}+\frac{4}{15625}
Square \frac{2}{125} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{125}x+\frac{4}{15625}=-\frac{96}{15625}
Add -\frac{4}{625} to \frac{4}{15625} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{125}\right)^{2}=-\frac{96}{15625}
Factor x^{2}+\frac{4}{125}x+\frac{4}{15625}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{125}\right)^{2}}=\sqrt{-\frac{96}{15625}}
Take the square root of both sides of the equation.
x+\frac{2}{125}=\frac{4\sqrt{6}i}{125} x+\frac{2}{125}=-\frac{4\sqrt{6}i}{125}
Simplify.
x=\frac{-2+4\sqrt{6}i}{125} x=\frac{-4\sqrt{6}i-2}{125}
Subtract \frac{2}{125} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}