Solve for x
x=3.2
Graph
Share
Copied to clipboard
6.25+5\times \frac{x}{2}+\left(\frac{x}{2}\right)^{2}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2.5+\frac{x}{2}\right)^{2}.
6.25+\frac{5x}{2}+\left(\frac{x}{2}\right)^{2}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Express 5\times \frac{x}{2} as a single fraction.
6.25+\frac{5x}{2}+\frac{x^{2}}{2^{2}}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
6.25+\frac{2\times 5x}{4}+\frac{x^{2}}{4}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 2^{2} is 4. Multiply \frac{5x}{2} times \frac{2}{2}.
6.25+\frac{2\times 5x+x^{2}}{4}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Since \frac{2\times 5x}{4} and \frac{x^{2}}{4} have the same denominator, add them by adding their numerators.
6.25+\frac{10x+x^{2}}{4}-\left(2.5-\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Do the multiplications in 2\times 5x+x^{2}.
6.25+\frac{10x+x^{2}}{4}-\left(6.25+5\left(-\frac{x}{2}\right)+\left(-\frac{x}{2}\right)^{2}\right)=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2.5-\frac{x}{2}\right)^{2}.
6.25+\frac{10x+x^{2}}{4}-\left(6.25+\frac{-5x}{2}+\left(-\frac{x}{2}\right)^{2}\right)=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Express 5\left(-\frac{x}{2}\right) as a single fraction.
6.25+\frac{10x+x^{2}}{4}-\left(6.25+\frac{-5x}{2}+\left(\frac{x}{2}\right)^{2}\right)=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Calculate -\frac{x}{2} to the power of 2 and get \left(\frac{x}{2}\right)^{2}.
6.25+\frac{10x+x^{2}}{4}-6.25-\frac{-5x}{2}-\left(\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To find the opposite of 6.25+\frac{-5x}{2}+\left(\frac{x}{2}\right)^{2}, find the opposite of each term.
\frac{10x+x^{2}}{4}-\frac{-5x}{2}-\left(\frac{x}{2}\right)^{2}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Subtract 6.25 from 6.25 to get 0.
\frac{10x+x^{2}}{4}-\frac{-5x}{2}-\frac{x^{2}}{2^{2}}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To raise \frac{x}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{10x+x^{2}}{4}-\frac{2\left(-5\right)x}{4}-\frac{x^{2}}{2^{2}}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{-5x}{2} times \frac{2}{2}.
\frac{10x+x^{2}-2\left(-5\right)x}{4}-\frac{x^{2}}{2^{2}}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Since \frac{10x+x^{2}}{4} and \frac{2\left(-5\right)x}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{10x+x^{2}+10x}{4}-\frac{x^{2}}{2^{2}}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Do the multiplications in 10x+x^{2}-2\left(-5\right)x.
\frac{20x+x^{2}}{4}-\frac{x^{2}}{2^{2}}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Combine like terms in 10x+x^{2}+10x.
\frac{20x+x^{2}}{4}-\frac{x^{2}}{4}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Expand 2^{2}.
\frac{20x+x^{2}-x^{2}}{4}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Since \frac{20x+x^{2}}{4} and \frac{x^{2}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{20x}{4}=\left(\frac{4\left(2.5+\frac{5}{2}\right)}{5}\right)^{2}
Combine like terms in 20x+x^{2}-x^{2}.
\frac{20x}{4}=\left(\frac{4\times 5}{5}\right)^{2}
Add 2.5 and \frac{5}{2} to get 5.
\frac{20x}{4}=\left(\frac{20}{5}\right)^{2}
Multiply 4 and 5 to get 20.
\frac{20x}{4}=4^{2}
Divide 20 by 5 to get 4.
\frac{20x}{4}=16
Calculate 4 to the power of 2 and get 16.
5x=16
Divide 20x by 4 to get 5x.
x=\frac{16}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}