Solve for x (complex solution)
x=\frac{4}{5}+\frac{1}{10}i=0.8+0.1i
x=\frac{4}{5}-\frac{1}{10}i=0.8-0.1i
Graph
Share
Copied to clipboard
4\left(2-x\right)^{3}-4\left(2-x\right)^{2}=3-4x^{3}
Multiply both sides of the equation by 4.
4\left(8-12x+6x^{2}-x^{3}\right)-4\left(2-x\right)^{2}=3-4x^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2-x\right)^{3}.
32-48x+24x^{2}-4x^{3}-4\left(2-x\right)^{2}=3-4x^{3}
Use the distributive property to multiply 4 by 8-12x+6x^{2}-x^{3}.
32-48x+24x^{2}-4x^{3}-4\left(4-4x+x^{2}\right)=3-4x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
32-48x+24x^{2}-4x^{3}-16+16x-4x^{2}=3-4x^{3}
Use the distributive property to multiply -4 by 4-4x+x^{2}.
16-48x+24x^{2}-4x^{3}+16x-4x^{2}=3-4x^{3}
Subtract 16 from 32 to get 16.
16-32x+24x^{2}-4x^{3}-4x^{2}=3-4x^{3}
Combine -48x and 16x to get -32x.
16-32x+20x^{2}-4x^{3}=3-4x^{3}
Combine 24x^{2} and -4x^{2} to get 20x^{2}.
16-32x+20x^{2}-4x^{3}-3=-4x^{3}
Subtract 3 from both sides.
13-32x+20x^{2}-4x^{3}=-4x^{3}
Subtract 3 from 16 to get 13.
13-32x+20x^{2}-4x^{3}+4x^{3}=0
Add 4x^{3} to both sides.
13-32x+20x^{2}=0
Combine -4x^{3} and 4x^{3} to get 0.
20x^{2}-32x+13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 20\times 13}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -32 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 20\times 13}}{2\times 20}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-80\times 13}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-32\right)±\sqrt{1024-1040}}{2\times 20}
Multiply -80 times 13.
x=\frac{-\left(-32\right)±\sqrt{-16}}{2\times 20}
Add 1024 to -1040.
x=\frac{-\left(-32\right)±4i}{2\times 20}
Take the square root of -16.
x=\frac{32±4i}{2\times 20}
The opposite of -32 is 32.
x=\frac{32±4i}{40}
Multiply 2 times 20.
x=\frac{32+4i}{40}
Now solve the equation x=\frac{32±4i}{40} when ± is plus. Add 32 to 4i.
x=\frac{4}{5}+\frac{1}{10}i
Divide 32+4i by 40.
x=\frac{32-4i}{40}
Now solve the equation x=\frac{32±4i}{40} when ± is minus. Subtract 4i from 32.
x=\frac{4}{5}-\frac{1}{10}i
Divide 32-4i by 40.
x=\frac{4}{5}+\frac{1}{10}i x=\frac{4}{5}-\frac{1}{10}i
The equation is now solved.
4\left(2-x\right)^{3}-4\left(2-x\right)^{2}=3-4x^{3}
Multiply both sides of the equation by 4.
4\left(8-12x+6x^{2}-x^{3}\right)-4\left(2-x\right)^{2}=3-4x^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(2-x\right)^{3}.
32-48x+24x^{2}-4x^{3}-4\left(2-x\right)^{2}=3-4x^{3}
Use the distributive property to multiply 4 by 8-12x+6x^{2}-x^{3}.
32-48x+24x^{2}-4x^{3}-4\left(4-4x+x^{2}\right)=3-4x^{3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-x\right)^{2}.
32-48x+24x^{2}-4x^{3}-16+16x-4x^{2}=3-4x^{3}
Use the distributive property to multiply -4 by 4-4x+x^{2}.
16-48x+24x^{2}-4x^{3}+16x-4x^{2}=3-4x^{3}
Subtract 16 from 32 to get 16.
16-32x+24x^{2}-4x^{3}-4x^{2}=3-4x^{3}
Combine -48x and 16x to get -32x.
16-32x+20x^{2}-4x^{3}=3-4x^{3}
Combine 24x^{2} and -4x^{2} to get 20x^{2}.
16-32x+20x^{2}-4x^{3}+4x^{3}=3
Add 4x^{3} to both sides.
16-32x+20x^{2}=3
Combine -4x^{3} and 4x^{3} to get 0.
-32x+20x^{2}=3-16
Subtract 16 from both sides.
-32x+20x^{2}=-13
Subtract 16 from 3 to get -13.
20x^{2}-32x=-13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20x^{2}-32x}{20}=-\frac{13}{20}
Divide both sides by 20.
x^{2}+\left(-\frac{32}{20}\right)x=-\frac{13}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}-\frac{8}{5}x=-\frac{13}{20}
Reduce the fraction \frac{-32}{20} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{8}{5}x+\left(-\frac{4}{5}\right)^{2}=-\frac{13}{20}+\left(-\frac{4}{5}\right)^{2}
Divide -\frac{8}{5}, the coefficient of the x term, by 2 to get -\frac{4}{5}. Then add the square of -\frac{4}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{13}{20}+\frac{16}{25}
Square -\frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8}{5}x+\frac{16}{25}=-\frac{1}{100}
Add -\frac{13}{20} to \frac{16}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{4}{5}\right)^{2}=-\frac{1}{100}
Factor x^{2}-\frac{8}{5}x+\frac{16}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{5}\right)^{2}}=\sqrt{-\frac{1}{100}}
Take the square root of both sides of the equation.
x-\frac{4}{5}=\frac{1}{10}i x-\frac{4}{5}=-\frac{1}{10}i
Simplify.
x=\frac{4}{5}+\frac{1}{10}i x=\frac{4}{5}-\frac{1}{10}i
Add \frac{4}{5} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}