Solve for x (complex solution)
x=-\frac{\sqrt{26}i}{2}\approx -0-2.549509757i
x=\frac{\sqrt{26}i}{2}\approx 2.549509757i
Graph
Quiz
Polynomial
5 problems similar to:
{ \left(2+x-5 \right) }^{ 2 } + { \left(1-x-4 \right) }^{ 2 } =5
Share
Copied to clipboard
\left(-3+x\right)^{2}+\left(1-x-4\right)^{2}=5
Subtract 5 from 2 to get -3.
9-6x+x^{2}+\left(1-x-4\right)^{2}=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+x\right)^{2}.
9-6x+x^{2}+\left(-3-x\right)^{2}=5
Subtract 4 from 1 to get -3.
9-6x+x^{2}+9+6x+x^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
18-6x+x^{2}+6x+x^{2}=5
Add 9 and 9 to get 18.
18+x^{2}+x^{2}=5
Combine -6x and 6x to get 0.
18+2x^{2}=5
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=5-18
Subtract 18 from both sides.
2x^{2}=-13
Subtract 18 from 5 to get -13.
x^{2}=-\frac{13}{2}
Divide both sides by 2.
x=\frac{\sqrt{26}i}{2} x=-\frac{\sqrt{26}i}{2}
The equation is now solved.
\left(-3+x\right)^{2}+\left(1-x-4\right)^{2}=5
Subtract 5 from 2 to get -3.
9-6x+x^{2}+\left(1-x-4\right)^{2}=5
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+x\right)^{2}.
9-6x+x^{2}+\left(-3-x\right)^{2}=5
Subtract 4 from 1 to get -3.
9-6x+x^{2}+9+6x+x^{2}=5
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
18-6x+x^{2}+6x+x^{2}=5
Add 9 and 9 to get 18.
18+x^{2}+x^{2}=5
Combine -6x and 6x to get 0.
18+2x^{2}=5
Combine x^{2} and x^{2} to get 2x^{2}.
18+2x^{2}-5=0
Subtract 5 from both sides.
13+2x^{2}=0
Subtract 5 from 18 to get 13.
2x^{2}+13=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 13}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 13}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times 13}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-104}}{2\times 2}
Multiply -8 times 13.
x=\frac{0±2\sqrt{26}i}{2\times 2}
Take the square root of -104.
x=\frac{0±2\sqrt{26}i}{4}
Multiply 2 times 2.
x=\frac{\sqrt{26}i}{2}
Now solve the equation x=\frac{0±2\sqrt{26}i}{4} when ± is plus.
x=-\frac{\sqrt{26}i}{2}
Now solve the equation x=\frac{0±2\sqrt{26}i}{4} when ± is minus.
x=\frac{\sqrt{26}i}{2} x=-\frac{\sqrt{26}i}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}