Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(x^{2}\right)^{2}+84x^{2}+441=\left(x^{2}+22\right)\left(x^{2}-22\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x^{2}+21\right)^{2}.
4x^{4}+84x^{2}+441=\left(x^{2}+22\right)\left(x^{2}-22\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}+84x^{2}+441=\left(x^{2}\right)^{2}-484
Consider \left(x^{2}+22\right)\left(x^{2}-22\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 22.
4x^{4}+84x^{2}+441=x^{4}-484
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}+84x^{2}+441-x^{4}=-484
Subtract x^{4} from both sides.
3x^{4}+84x^{2}+441=-484
Combine 4x^{4} and -x^{4} to get 3x^{4}.
3x^{4}+84x^{2}+441+484=0
Add 484 to both sides.
3x^{4}+84x^{2}+925=0
Add 441 and 484 to get 925.
3t^{2}+84t+925=0
Substitute t for x^{2}.
t=\frac{-84±\sqrt{84^{2}-4\times 3\times 925}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 84 for b, and 925 for c in the quadratic formula.
t=\frac{-84±\sqrt{-4044}}{6}
Do the calculations.
t=\frac{\sqrt{1011}i}{3}-14 t=-\frac{\sqrt{1011}i}{3}-14
Solve the equation t=\frac{-84±\sqrt{-4044}}{6} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{\left(\arctan(\frac{\sqrt{1011}}{42})+\pi \right)i}{2}}}{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.