Solve for x (complex solution)
x=\frac{\sqrt[4]{24975}e^{\frac{\left(\arctan(\frac{\sqrt{1011}}{42})+\pi \right)i}{2}}}{3}\approx -1.334058267+3.972368495i
x=\frac{\sqrt[4]{24975}e^{\frac{\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3}\approx 1.334058267-3.972368495i
x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3}\approx -1.334058267-3.972368495i
x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+\pi i}{2}}}{3}\approx 1.334058267+3.972368495i
Graph
Share
Copied to clipboard
4\left(x^{2}\right)^{2}+84x^{2}+441=\left(x^{2}+22\right)\left(x^{2}-22\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x^{2}+21\right)^{2}.
4x^{4}+84x^{2}+441=\left(x^{2}+22\right)\left(x^{2}-22\right)
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}+84x^{2}+441=\left(x^{2}\right)^{2}-484
Consider \left(x^{2}+22\right)\left(x^{2}-22\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 22.
4x^{4}+84x^{2}+441=x^{4}-484
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4x^{4}+84x^{2}+441-x^{4}=-484
Subtract x^{4} from both sides.
3x^{4}+84x^{2}+441=-484
Combine 4x^{4} and -x^{4} to get 3x^{4}.
3x^{4}+84x^{2}+441+484=0
Add 484 to both sides.
3x^{4}+84x^{2}+925=0
Add 441 and 484 to get 925.
3t^{2}+84t+925=0
Substitute t for x^{2}.
t=\frac{-84±\sqrt{84^{2}-4\times 3\times 925}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 84 for b, and 925 for c in the quadratic formula.
t=\frac{-84±\sqrt{-4044}}{6}
Do the calculations.
t=\frac{\sqrt{1011}i}{3}-14 t=-\frac{\sqrt{1011}i}{3}-14
Solve the equation t=\frac{-84±\sqrt{-4044}}{6} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{-\arctan(\frac{\sqrt{1011}}{42})i+\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{\arctan(\frac{\sqrt{1011}}{42})i+3\pi i}{2}}}{3} x=\frac{\sqrt[4]{24975}e^{\frac{\left(\arctan(\frac{\sqrt{1011}}{42})+\pi \right)i}{2}}}{3}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}