Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
20+20\sqrt{10}+25\times 2-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
20+20\sqrt{10}+50-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
70+20\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
70+20\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
70+20\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
70+20\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
70+20\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
70+20\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
70+20\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
70+20\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
70+20\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
20\sqrt{10}+20\sqrt{10}
Subtract 70 from 70 to get 0.
40\sqrt{10}
Combine 20\sqrt{10} and 20\sqrt{10} to get 40\sqrt{10}.
4\left(\sqrt{5}\right)^{2}+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{5}+5\sqrt{2}\right)^{2}.
4\times 5+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
20+20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 4 and 5 to get 20.
20+20\sqrt{10}+25\left(\sqrt{2}\right)^{2}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
20+20\sqrt{10}+25\times 2-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
20+20\sqrt{10}+50-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Multiply 25 and 2 to get 50.
70+20\sqrt{10}-\left(2\sqrt{5}-5\sqrt{2}\right)^{2}
Add 20 and 50 to get 70.
70+20\sqrt{10}-\left(4\left(\sqrt{5}\right)^{2}-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{5}-5\sqrt{2}\right)^{2}.
70+20\sqrt{10}-\left(4\times 5-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
The square of \sqrt{5} is 5.
70+20\sqrt{10}-\left(20-20\sqrt{5}\sqrt{2}+25\left(\sqrt{2}\right)^{2}\right)
Multiply 4 and 5 to get 20.
70+20\sqrt{10}-\left(20-20\sqrt{10}+25\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
70+20\sqrt{10}-\left(20-20\sqrt{10}+25\times 2\right)
The square of \sqrt{2} is 2.
70+20\sqrt{10}-\left(20-20\sqrt{10}+50\right)
Multiply 25 and 2 to get 50.
70+20\sqrt{10}-\left(70-20\sqrt{10}\right)
Add 20 and 50 to get 70.
70+20\sqrt{10}-70+20\sqrt{10}
To find the opposite of 70-20\sqrt{10}, find the opposite of each term.
20\sqrt{10}+20\sqrt{10}
Subtract 70 from 70 to get 0.
40\sqrt{10}
Combine 20\sqrt{10} and 20\sqrt{10} to get 40\sqrt{10}.