Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Multiply 4 and 3 to get 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
12+12\sqrt{15}+9\times 5
The square of \sqrt{5} is 5.
12+12\sqrt{15}+45
Multiply 9 and 5 to get 45.
57+12\sqrt{15}
Add 12 and 45 to get 57.
4\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{3}+3\sqrt{5}\right)^{2}.
4\times 3+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
The square of \sqrt{3} is 3.
12+12\sqrt{3}\sqrt{5}+9\left(\sqrt{5}\right)^{2}
Multiply 4 and 3 to get 12.
12+12\sqrt{15}+9\left(\sqrt{5}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
12+12\sqrt{15}+9\times 5
The square of \sqrt{5} is 5.
12+12\sqrt{15}+45
Multiply 9 and 5 to get 45.
57+12\sqrt{15}
Add 12 and 45 to get 57.