Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(\sqrt{2}\right)^{2}-12\sqrt{2}+9-\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{2}-3\right)^{2}.
4\times 2-12\sqrt{2}+9-\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)
The square of \sqrt{2} is 2.
8-12\sqrt{2}+9-\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)
Multiply 4 and 2 to get 8.
17-12\sqrt{2}-\left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right)
Add 8 and 9 to get 17.
17-12\sqrt{2}-\left(\left(2\sqrt{2}\right)^{2}-1\right)
Consider \left(2\sqrt{2}+1\right)\left(2\sqrt{2}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
17-12\sqrt{2}-\left(2^{2}\left(\sqrt{2}\right)^{2}-1\right)
Expand \left(2\sqrt{2}\right)^{2}.
17-12\sqrt{2}-\left(4\left(\sqrt{2}\right)^{2}-1\right)
Calculate 2 to the power of 2 and get 4.
17-12\sqrt{2}-\left(4\times 2-1\right)
The square of \sqrt{2} is 2.
17-12\sqrt{2}-\left(8-1\right)
Multiply 4 and 2 to get 8.
17-12\sqrt{2}-7
Subtract 1 from 8 to get 7.
10-12\sqrt{2}
Subtract 7 from 17 to get 10.