Solve for x
x = -\frac{9}{5} = -1\frac{4}{5} = -1.8
Graph
Share
Copied to clipboard
2^{2}\left(\sqrt{13}\right)^{2}-\left(5-x\right)^{2}=9-x^{2}
Expand \left(2\sqrt{13}\right)^{2}.
4\left(\sqrt{13}\right)^{2}-\left(5-x\right)^{2}=9-x^{2}
Calculate 2 to the power of 2 and get 4.
4\times 13-\left(5-x\right)^{2}=9-x^{2}
The square of \sqrt{13} is 13.
52-\left(5-x\right)^{2}=9-x^{2}
Multiply 4 and 13 to get 52.
52-\left(25-10x+x^{2}\right)=9-x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-x\right)^{2}.
52-25+10x-x^{2}=9-x^{2}
To find the opposite of 25-10x+x^{2}, find the opposite of each term.
27+10x-x^{2}=9-x^{2}
Subtract 25 from 52 to get 27.
27+10x-x^{2}+x^{2}=9
Add x^{2} to both sides.
27+10x=9
Combine -x^{2} and x^{2} to get 0.
10x=9-27
Subtract 27 from both sides.
10x=-18
Subtract 27 from 9 to get -18.
x=\frac{-18}{10}
Divide both sides by 10.
x=-\frac{9}{5}
Reduce the fraction \frac{-18}{10} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}