Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2^{2}\left(\sqrt{13}\right)^{2}-\left(5+x\right)^{2}=3^{2}-x^{2}
Expand \left(2\sqrt{13}\right)^{2}.
4\left(\sqrt{13}\right)^{2}-\left(5+x\right)^{2}=3^{2}-x^{2}
Calculate 2 to the power of 2 and get 4.
4\times 13-\left(5+x\right)^{2}=3^{2}-x^{2}
The square of \sqrt{13} is 13.
52-\left(5+x\right)^{2}=3^{2}-x^{2}
Multiply 4 and 13 to get 52.
52-\left(25+10x+x^{2}\right)=3^{2}-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+x\right)^{2}.
52-25-10x-x^{2}=3^{2}-x^{2}
To find the opposite of 25+10x+x^{2}, find the opposite of each term.
27-10x-x^{2}=3^{2}-x^{2}
Subtract 25 from 52 to get 27.
27-10x-x^{2}=9-x^{2}
Calculate 3 to the power of 2 and get 9.
27-10x-x^{2}+x^{2}=9
Add x^{2} to both sides.
27-10x=9
Combine -x^{2} and x^{2} to get 0.
-10x=9-27
Subtract 27 from both sides.
-10x=-18
Subtract 27 from 9 to get -18.
x=\frac{-18}{-10}
Divide both sides by -10.
x=\frac{9}{5}
Reduce the fraction \frac{-18}{-10} to lowest terms by extracting and canceling out -2.