Solve for x (complex solution)
x=\frac{\sqrt{3}i}{6}+\frac{3997}{2}\approx 1998.5+0.288675135i
x=-\frac{\sqrt{3}i}{6}+\frac{3997}{2}\approx 1998.5-0.288675135i
Graph
Share
Copied to clipboard
7988005999-11988003x+5997x^{2}-x^{3}+\left(x-1998\right)^{3}=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1999-x\right)^{3}.
7988005999-11988003x+5997x^{2}-x^{3}+x^{3}-5994x^{2}+11976012x-7976023992=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1998\right)^{3}.
7988005999-11988003x+5997x^{2}-5994x^{2}+11976012x-7976023992=0
Combine -x^{3} and x^{3} to get 0.
7988005999-11988003x+3x^{2}+11976012x-7976023992=0
Combine 5997x^{2} and -5994x^{2} to get 3x^{2}.
7988005999-11991x+3x^{2}-7976023992=0
Combine -11988003x and 11976012x to get -11991x.
11982007-11991x+3x^{2}=0
Subtract 7976023992 from 7988005999 to get 11982007.
3x^{2}-11991x+11982007=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11991\right)±\sqrt{\left(-11991\right)^{2}-4\times 3\times 11982007}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11991 for b, and 11982007 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11991\right)±\sqrt{143784081-4\times 3\times 11982007}}{2\times 3}
Square -11991.
x=\frac{-\left(-11991\right)±\sqrt{143784081-12\times 11982007}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11991\right)±\sqrt{143784081-143784084}}{2\times 3}
Multiply -12 times 11982007.
x=\frac{-\left(-11991\right)±\sqrt{-3}}{2\times 3}
Add 143784081 to -143784084.
x=\frac{-\left(-11991\right)±\sqrt{3}i}{2\times 3}
Take the square root of -3.
x=\frac{11991±\sqrt{3}i}{2\times 3}
The opposite of -11991 is 11991.
x=\frac{11991±\sqrt{3}i}{6}
Multiply 2 times 3.
x=\frac{11991+\sqrt{3}i}{6}
Now solve the equation x=\frac{11991±\sqrt{3}i}{6} when ± is plus. Add 11991 to i\sqrt{3}.
x=\frac{\sqrt{3}i}{6}+\frac{3997}{2}
Divide 11991+i\sqrt{3} by 6.
x=\frac{-\sqrt{3}i+11991}{6}
Now solve the equation x=\frac{11991±\sqrt{3}i}{6} when ± is minus. Subtract i\sqrt{3} from 11991.
x=-\frac{\sqrt{3}i}{6}+\frac{3997}{2}
Divide 11991-i\sqrt{3} by 6.
x=\frac{\sqrt{3}i}{6}+\frac{3997}{2} x=-\frac{\sqrt{3}i}{6}+\frac{3997}{2}
The equation is now solved.
7988005999-11988003x+5997x^{2}-x^{3}+\left(x-1998\right)^{3}=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(1999-x\right)^{3}.
7988005999-11988003x+5997x^{2}-x^{3}+x^{3}-5994x^{2}+11976012x-7976023992=0
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-1998\right)^{3}.
7988005999-11988003x+5997x^{2}-5994x^{2}+11976012x-7976023992=0
Combine -x^{3} and x^{3} to get 0.
7988005999-11988003x+3x^{2}+11976012x-7976023992=0
Combine 5997x^{2} and -5994x^{2} to get 3x^{2}.
7988005999-11991x+3x^{2}-7976023992=0
Combine -11988003x and 11976012x to get -11991x.
11982007-11991x+3x^{2}=0
Subtract 7976023992 from 7988005999 to get 11982007.
-11991x+3x^{2}=-11982007
Subtract 11982007 from both sides. Anything subtracted from zero gives its negation.
3x^{2}-11991x=-11982007
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-11991x}{3}=-\frac{11982007}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{11991}{3}\right)x=-\frac{11982007}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-3997x=-\frac{11982007}{3}
Divide -11991 by 3.
x^{2}-3997x+\left(-\frac{3997}{2}\right)^{2}=-\frac{11982007}{3}+\left(-\frac{3997}{2}\right)^{2}
Divide -3997, the coefficient of the x term, by 2 to get -\frac{3997}{2}. Then add the square of -\frac{3997}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3997x+\frac{15976009}{4}=-\frac{11982007}{3}+\frac{15976009}{4}
Square -\frac{3997}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3997x+\frac{15976009}{4}=-\frac{1}{12}
Add -\frac{11982007}{3} to \frac{15976009}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3997}{2}\right)^{2}=-\frac{1}{12}
Factor x^{2}-3997x+\frac{15976009}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3997}{2}\right)^{2}}=\sqrt{-\frac{1}{12}}
Take the square root of both sides of the equation.
x-\frac{3997}{2}=\frac{\sqrt{3}i}{6} x-\frac{3997}{2}=-\frac{\sqrt{3}i}{6}
Simplify.
x=\frac{\sqrt{3}i}{6}+\frac{3997}{2} x=-\frac{\sqrt{3}i}{6}+\frac{3997}{2}
Add \frac{3997}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}