Solve for x
x = -\frac{15}{2} = -7\frac{1}{2} = -7.5
x = \frac{15}{2} = 7\frac{1}{2} = 7.5
Graph
Share
Copied to clipboard
\left(\frac{17x}{15}\right)^{2}-x^{2}=16
Express 17\times \frac{x}{15} as a single fraction.
\frac{\left(17x\right)^{2}}{15^{2}}-x^{2}=16
To raise \frac{17x}{15} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(17x\right)^{2}}{15^{2}}-\frac{x^{2}\times 15^{2}}{15^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{15^{2}}{15^{2}}.
\frac{\left(17x\right)^{2}-x^{2}\times 15^{2}}{15^{2}}=16
Since \frac{\left(17x\right)^{2}}{15^{2}} and \frac{x^{2}\times 15^{2}}{15^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(17x\right)^{2}-225x^{2}}{15^{2}}=16
Do the multiplications in \left(17x\right)^{2}-x^{2}\times 15^{2}.
\frac{64x^{2}}{15^{2}}=16
Combine like terms in \left(17x\right)^{2}-225x^{2}.
\frac{64x^{2}}{225}=16
Calculate 15 to the power of 2 and get 225.
\frac{64x^{2}}{225}-16=0
Subtract 16 from both sides.
64x^{2}-3600=0
Multiply both sides of the equation by 225.
4x^{2}-225=0
Divide both sides by 16.
\left(2x-15\right)\left(2x+15\right)=0
Consider 4x^{2}-225. Rewrite 4x^{2}-225 as \left(2x\right)^{2}-15^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{15}{2} x=-\frac{15}{2}
To find equation solutions, solve 2x-15=0 and 2x+15=0.
\left(\frac{17x}{15}\right)^{2}-x^{2}=16
Express 17\times \frac{x}{15} as a single fraction.
\frac{\left(17x\right)^{2}}{15^{2}}-x^{2}=16
To raise \frac{17x}{15} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(17x\right)^{2}}{15^{2}}-\frac{x^{2}\times 15^{2}}{15^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{15^{2}}{15^{2}}.
\frac{\left(17x\right)^{2}-x^{2}\times 15^{2}}{15^{2}}=16
Since \frac{\left(17x\right)^{2}}{15^{2}} and \frac{x^{2}\times 15^{2}}{15^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(17x\right)^{2}-225x^{2}}{15^{2}}=16
Do the multiplications in \left(17x\right)^{2}-x^{2}\times 15^{2}.
\frac{64x^{2}}{15^{2}}=16
Combine like terms in \left(17x\right)^{2}-225x^{2}.
\frac{64x^{2}}{225}=16
Calculate 15 to the power of 2 and get 225.
64x^{2}=16\times 225
Multiply both sides by 225.
64x^{2}=3600
Multiply 16 and 225 to get 3600.
x^{2}=\frac{3600}{64}
Divide both sides by 64.
x^{2}=\frac{225}{4}
Reduce the fraction \frac{3600}{64} to lowest terms by extracting and canceling out 16.
x=\frac{15}{2} x=-\frac{15}{2}
Take the square root of both sides of the equation.
\left(\frac{17x}{15}\right)^{2}-x^{2}=16
Express 17\times \frac{x}{15} as a single fraction.
\frac{\left(17x\right)^{2}}{15^{2}}-x^{2}=16
To raise \frac{17x}{15} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(17x\right)^{2}}{15^{2}}-\frac{x^{2}\times 15^{2}}{15^{2}}=16
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2} times \frac{15^{2}}{15^{2}}.
\frac{\left(17x\right)^{2}-x^{2}\times 15^{2}}{15^{2}}=16
Since \frac{\left(17x\right)^{2}}{15^{2}} and \frac{x^{2}\times 15^{2}}{15^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(17x\right)^{2}-225x^{2}}{15^{2}}=16
Do the multiplications in \left(17x\right)^{2}-x^{2}\times 15^{2}.
\frac{64x^{2}}{15^{2}}=16
Combine like terms in \left(17x\right)^{2}-225x^{2}.
\frac{64x^{2}}{225}=16
Calculate 15 to the power of 2 and get 225.
\frac{64x^{2}}{225}-16=0
Subtract 16 from both sides.
64x^{2}-3600=0
Multiply both sides of the equation by 225.
x=\frac{0±\sqrt{0^{2}-4\times 64\left(-3600\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 0 for b, and -3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 64\left(-3600\right)}}{2\times 64}
Square 0.
x=\frac{0±\sqrt{-256\left(-3600\right)}}{2\times 64}
Multiply -4 times 64.
x=\frac{0±\sqrt{921600}}{2\times 64}
Multiply -256 times -3600.
x=\frac{0±960}{2\times 64}
Take the square root of 921600.
x=\frac{0±960}{128}
Multiply 2 times 64.
x=\frac{15}{2}
Now solve the equation x=\frac{0±960}{128} when ± is plus. Reduce the fraction \frac{960}{128} to lowest terms by extracting and canceling out 64.
x=-\frac{15}{2}
Now solve the equation x=\frac{0±960}{128} when ± is minus. Reduce the fraction \frac{-960}{128} to lowest terms by extracting and canceling out 64.
x=\frac{15}{2} x=-\frac{15}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}