Solve for x (complex solution)
x=\frac{9+\sqrt{431}i}{64}\approx 0.140625+0.32438343i
x=\frac{-\sqrt{431}i+9}{64}\approx 0.140625-0.32438343i
Graph
Share
Copied to clipboard
16^{2}x^{2}-72x+32=0
Expand \left(16x\right)^{2}.
256x^{2}-72x+32=0
Calculate 16 to the power of 2 and get 256.
x=\frac{-\left(-72\right)±\sqrt{\left(-72\right)^{2}-4\times 256\times 32}}{2\times 256}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 256 for a, -72 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-72\right)±\sqrt{5184-4\times 256\times 32}}{2\times 256}
Square -72.
x=\frac{-\left(-72\right)±\sqrt{5184-1024\times 32}}{2\times 256}
Multiply -4 times 256.
x=\frac{-\left(-72\right)±\sqrt{5184-32768}}{2\times 256}
Multiply -1024 times 32.
x=\frac{-\left(-72\right)±\sqrt{-27584}}{2\times 256}
Add 5184 to -32768.
x=\frac{-\left(-72\right)±8\sqrt{431}i}{2\times 256}
Take the square root of -27584.
x=\frac{72±8\sqrt{431}i}{2\times 256}
The opposite of -72 is 72.
x=\frac{72±8\sqrt{431}i}{512}
Multiply 2 times 256.
x=\frac{72+8\sqrt{431}i}{512}
Now solve the equation x=\frac{72±8\sqrt{431}i}{512} when ± is plus. Add 72 to 8i\sqrt{431}.
x=\frac{9+\sqrt{431}i}{64}
Divide 72+8i\sqrt{431} by 512.
x=\frac{-8\sqrt{431}i+72}{512}
Now solve the equation x=\frac{72±8\sqrt{431}i}{512} when ± is minus. Subtract 8i\sqrt{431} from 72.
x=\frac{-\sqrt{431}i+9}{64}
Divide 72-8i\sqrt{431} by 512.
x=\frac{9+\sqrt{431}i}{64} x=\frac{-\sqrt{431}i+9}{64}
The equation is now solved.
16^{2}x^{2}-72x+32=0
Expand \left(16x\right)^{2}.
256x^{2}-72x+32=0
Calculate 16 to the power of 2 and get 256.
256x^{2}-72x=-32
Subtract 32 from both sides. Anything subtracted from zero gives its negation.
\frac{256x^{2}-72x}{256}=-\frac{32}{256}
Divide both sides by 256.
x^{2}+\left(-\frac{72}{256}\right)x=-\frac{32}{256}
Dividing by 256 undoes the multiplication by 256.
x^{2}-\frac{9}{32}x=-\frac{32}{256}
Reduce the fraction \frac{-72}{256} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{9}{32}x=-\frac{1}{8}
Reduce the fraction \frac{-32}{256} to lowest terms by extracting and canceling out 32.
x^{2}-\frac{9}{32}x+\left(-\frac{9}{64}\right)^{2}=-\frac{1}{8}+\left(-\frac{9}{64}\right)^{2}
Divide -\frac{9}{32}, the coefficient of the x term, by 2 to get -\frac{9}{64}. Then add the square of -\frac{9}{64} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{32}x+\frac{81}{4096}=-\frac{1}{8}+\frac{81}{4096}
Square -\frac{9}{64} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{32}x+\frac{81}{4096}=-\frac{431}{4096}
Add -\frac{1}{8} to \frac{81}{4096} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{64}\right)^{2}=-\frac{431}{4096}
Factor x^{2}-\frac{9}{32}x+\frac{81}{4096}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{64}\right)^{2}}=\sqrt{-\frac{431}{4096}}
Take the square root of both sides of the equation.
x-\frac{9}{64}=\frac{\sqrt{431}i}{64} x-\frac{9}{64}=-\frac{\sqrt{431}i}{64}
Simplify.
x=\frac{9+\sqrt{431}i}{64} x=\frac{-\sqrt{431}i+9}{64}
Add \frac{9}{64} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}