Solve for x
x = \frac{10000 \sqrt{4957} + 831900}{11681} \approx 131.492137365
x = \frac{831900 - 10000 \sqrt{4957}}{11681} \approx 10.944297871
Graph
Share
Copied to clipboard
10000-200x+x^{2}+\left(41+0.41x\right)^{2}=10000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(100-x\right)^{2}.
10000-200x+x^{2}+1681+33.62x+0.1681x^{2}=10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(41+0.41x\right)^{2}.
11681-200x+x^{2}+33.62x+0.1681x^{2}=10000
Add 10000 and 1681 to get 11681.
11681-166.38x+x^{2}+0.1681x^{2}=10000
Combine -200x and 33.62x to get -166.38x.
11681-166.38x+1.1681x^{2}=10000
Combine x^{2} and 0.1681x^{2} to get 1.1681x^{2}.
11681-166.38x+1.1681x^{2}-10000=0
Subtract 10000 from both sides.
1681-166.38x+1.1681x^{2}=0
Subtract 10000 from 11681 to get 1681.
1.1681x^{2}-166.38x+1681=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-166.38\right)±\sqrt{\left(-166.38\right)^{2}-4\times 1.1681\times 1681}}{2\times 1.1681}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.1681 for a, -166.38 for b, and 1681 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-166.38\right)±\sqrt{27682.3044-4\times 1.1681\times 1681}}{2\times 1.1681}
Square -166.38 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-166.38\right)±\sqrt{27682.3044-4.6724\times 1681}}{2\times 1.1681}
Multiply -4 times 1.1681.
x=\frac{-\left(-166.38\right)±\sqrt{\frac{69205761-19635761}{2500}}}{2\times 1.1681}
Multiply -4.6724 times 1681.
x=\frac{-\left(-166.38\right)±\sqrt{19828}}{2\times 1.1681}
Add 27682.3044 to -7854.3044 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-166.38\right)±2\sqrt{4957}}{2\times 1.1681}
Take the square root of 19828.
x=\frac{166.38±2\sqrt{4957}}{2\times 1.1681}
The opposite of -166.38 is 166.38.
x=\frac{166.38±2\sqrt{4957}}{2.3362}
Multiply 2 times 1.1681.
x=\frac{2\sqrt{4957}+166.38}{2.3362}
Now solve the equation x=\frac{166.38±2\sqrt{4957}}{2.3362} when ± is plus. Add 166.38 to 2\sqrt{4957}.
x=\frac{10000\sqrt{4957}+831900}{11681}
Divide 166.38+2\sqrt{4957} by 2.3362 by multiplying 166.38+2\sqrt{4957} by the reciprocal of 2.3362.
x=\frac{166.38-2\sqrt{4957}}{2.3362}
Now solve the equation x=\frac{166.38±2\sqrt{4957}}{2.3362} when ± is minus. Subtract 2\sqrt{4957} from 166.38.
x=\frac{831900-10000\sqrt{4957}}{11681}
Divide 166.38-2\sqrt{4957} by 2.3362 by multiplying 166.38-2\sqrt{4957} by the reciprocal of 2.3362.
x=\frac{10000\sqrt{4957}+831900}{11681} x=\frac{831900-10000\sqrt{4957}}{11681}
The equation is now solved.
10000-200x+x^{2}+\left(41+0.41x\right)^{2}=10000
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(100-x\right)^{2}.
10000-200x+x^{2}+1681+33.62x+0.1681x^{2}=10000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(41+0.41x\right)^{2}.
11681-200x+x^{2}+33.62x+0.1681x^{2}=10000
Add 10000 and 1681 to get 11681.
11681-166.38x+x^{2}+0.1681x^{2}=10000
Combine -200x and 33.62x to get -166.38x.
11681-166.38x+1.1681x^{2}=10000
Combine x^{2} and 0.1681x^{2} to get 1.1681x^{2}.
-166.38x+1.1681x^{2}=10000-11681
Subtract 11681 from both sides.
-166.38x+1.1681x^{2}=-1681
Subtract 11681 from 10000 to get -1681.
1.1681x^{2}-166.38x=-1681
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1.1681x^{2}-166.38x}{1.1681}=-\frac{1681}{1.1681}
Divide both sides of the equation by 1.1681, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{166.38}{1.1681}\right)x=-\frac{1681}{1.1681}
Dividing by 1.1681 undoes the multiplication by 1.1681.
x^{2}-\frac{1663800}{11681}x=-\frac{1681}{1.1681}
Divide -166.38 by 1.1681 by multiplying -166.38 by the reciprocal of 1.1681.
x^{2}-\frac{1663800}{11681}x=-\frac{16810000}{11681}
Divide -1681 by 1.1681 by multiplying -1681 by the reciprocal of 1.1681.
x^{2}-\frac{1663800}{11681}x+\left(-\frac{831900}{11681}\right)^{2}=-\frac{16810000}{11681}+\left(-\frac{831900}{11681}\right)^{2}
Divide -\frac{1663800}{11681}, the coefficient of the x term, by 2 to get -\frac{831900}{11681}. Then add the square of -\frac{831900}{11681} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1663800}{11681}x+\frac{692057610000}{136445761}=-\frac{16810000}{11681}+\frac{692057610000}{136445761}
Square -\frac{831900}{11681} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1663800}{11681}x+\frac{692057610000}{136445761}=\frac{495700000000}{136445761}
Add -\frac{16810000}{11681} to \frac{692057610000}{136445761} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{831900}{11681}\right)^{2}=\frac{495700000000}{136445761}
Factor x^{2}-\frac{1663800}{11681}x+\frac{692057610000}{136445761}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{831900}{11681}\right)^{2}}=\sqrt{\frac{495700000000}{136445761}}
Take the square root of both sides of the equation.
x-\frac{831900}{11681}=\frac{10000\sqrt{4957}}{11681} x-\frac{831900}{11681}=-\frac{10000\sqrt{4957}}{11681}
Simplify.
x=\frac{10000\sqrt{4957}+831900}{11681} x=\frac{831900-10000\sqrt{4957}}{11681}
Add \frac{831900}{11681} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}