Solve for x
x = \frac{4 \sqrt{358174} + 28}{625} \approx 3.875048953
x=\frac{28-4\sqrt{358174}}{625}\approx -3.785448953
Graph
Share
Copied to clipboard
1.25^{2}x^{2}-0.14x-22.92=0
Expand \left(1.25x\right)^{2}.
1.5625x^{2}-0.14x-22.92=0
Calculate 1.25 to the power of 2 and get 1.5625.
x=\frac{-\left(-0.14\right)±\sqrt{\left(-0.14\right)^{2}-4\times 1.5625\left(-22.92\right)}}{2\times 1.5625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.5625 for a, -0.14 for b, and -22.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-4\times 1.5625\left(-22.92\right)}}{2\times 1.5625}
Square -0.14 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-6.25\left(-22.92\right)}}{2\times 1.5625}
Multiply -4 times 1.5625.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196+143.25}}{2\times 1.5625}
Multiply -6.25 times -22.92 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.14\right)±\sqrt{143.2696}}{2\times 1.5625}
Add 0.0196 to 143.25 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.14\right)±\frac{\sqrt{358174}}{50}}{2\times 1.5625}
Take the square root of 143.2696.
x=\frac{0.14±\frac{\sqrt{358174}}{50}}{2\times 1.5625}
The opposite of -0.14 is 0.14.
x=\frac{0.14±\frac{\sqrt{358174}}{50}}{3.125}
Multiply 2 times 1.5625.
x=\frac{\sqrt{358174}+7}{3.125\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{358174}}{50}}{3.125} when ± is plus. Add 0.14 to \frac{\sqrt{358174}}{50}.
x=\frac{4\sqrt{358174}+28}{625}
Divide \frac{7+\sqrt{358174}}{50} by 3.125 by multiplying \frac{7+\sqrt{358174}}{50} by the reciprocal of 3.125.
x=\frac{7-\sqrt{358174}}{3.125\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{358174}}{50}}{3.125} when ± is minus. Subtract \frac{\sqrt{358174}}{50} from 0.14.
x=\frac{28-4\sqrt{358174}}{625}
Divide \frac{7-\sqrt{358174}}{50} by 3.125 by multiplying \frac{7-\sqrt{358174}}{50} by the reciprocal of 3.125.
x=\frac{4\sqrt{358174}+28}{625} x=\frac{28-4\sqrt{358174}}{625}
The equation is now solved.
1.25^{2}x^{2}-0.14x-22.92=0
Expand \left(1.25x\right)^{2}.
1.5625x^{2}-0.14x-22.92=0
Calculate 1.25 to the power of 2 and get 1.5625.
1.5625x^{2}-0.14x=22.92
Add 22.92 to both sides. Anything plus zero gives itself.
\frac{1.5625x^{2}-0.14x}{1.5625}=\frac{22.92}{1.5625}
Divide both sides of the equation by 1.5625, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.14}{1.5625}\right)x=\frac{22.92}{1.5625}
Dividing by 1.5625 undoes the multiplication by 1.5625.
x^{2}-0.0896x=\frac{22.92}{1.5625}
Divide -0.14 by 1.5625 by multiplying -0.14 by the reciprocal of 1.5625.
x^{2}-0.0896x=14.6688
Divide 22.92 by 1.5625 by multiplying 22.92 by the reciprocal of 1.5625.
x^{2}-0.0896x+\left(-0.0448\right)^{2}=14.6688+\left(-0.0448\right)^{2}
Divide -0.0896, the coefficient of the x term, by 2 to get -0.0448. Then add the square of -0.0448 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.0896x+0.00200704=14.6688+0.00200704
Square -0.0448 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.0896x+0.00200704=14.67080704
Add 14.6688 to 0.00200704 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.0448\right)^{2}=14.67080704
Factor x^{2}-0.0896x+0.00200704. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.0448\right)^{2}}=\sqrt{14.67080704}
Take the square root of both sides of the equation.
x-0.0448=\frac{4\sqrt{358174}}{625} x-0.0448=-\frac{4\sqrt{358174}}{625}
Simplify.
x=\frac{4\sqrt{358174}+28}{625} x=\frac{28-4\sqrt{358174}}{625}
Add 0.0448 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}