Solve for x
x>1
Graph
Share
Copied to clipboard
1-4x+4x^{2}+\left(x-3\right)^{2}<2x-x\left(3-5x\right)+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-2x\right)^{2}.
1-4x+4x^{2}+x^{2}-6x+9<2x-x\left(3-5x\right)+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
1-4x+5x^{2}-6x+9<2x-x\left(3-5x\right)+1
Combine 4x^{2} and x^{2} to get 5x^{2}.
1-10x+5x^{2}+9<2x-x\left(3-5x\right)+1
Combine -4x and -6x to get -10x.
10-10x+5x^{2}<2x-x\left(3-5x\right)+1
Add 1 and 9 to get 10.
10-10x+5x^{2}<2x-\left(3x-5x^{2}\right)+1
Use the distributive property to multiply x by 3-5x.
10-10x+5x^{2}<2x-3x+5x^{2}+1
To find the opposite of 3x-5x^{2}, find the opposite of each term.
10-10x+5x^{2}<-x+5x^{2}+1
Combine 2x and -3x to get -x.
10-10x+5x^{2}+x<5x^{2}+1
Add x to both sides.
10-9x+5x^{2}<5x^{2}+1
Combine -10x and x to get -9x.
10-9x+5x^{2}-5x^{2}<1
Subtract 5x^{2} from both sides.
10-9x<1
Combine 5x^{2} and -5x^{2} to get 0.
-9x<1-10
Subtract 10 from both sides.
-9x<-9
Subtract 10 from 1 to get -9.
x>\frac{-9}{-9}
Divide both sides by -9. Since -9 is negative, the inequality direction is changed.
x>1
Divide -9 by -9 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}