Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}+2-\sqrt{3}-1+\sqrt{108}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
1-2\sqrt{3}+3+2-\sqrt{3}-1+\sqrt{108}
The square of \sqrt{3} is 3.
4-2\sqrt{3}+2-\sqrt{3}-1+\sqrt{108}
Add 1 and 3 to get 4.
6-2\sqrt{3}-\sqrt{3}-1+\sqrt{108}
Add 4 and 2 to get 6.
6-3\sqrt{3}-1+\sqrt{108}
Combine -2\sqrt{3} and -\sqrt{3} to get -3\sqrt{3}.
5-3\sqrt{3}+\sqrt{108}
Subtract 1 from 6 to get 5.
5-3\sqrt{3}+6\sqrt{3}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
5+3\sqrt{3}
Combine -3\sqrt{3} and 6\sqrt{3} to get 3\sqrt{3}.