Evaluate
2-3\sqrt{2}\approx -2.242640687
Quiz
Arithmetic
5 problems similar to:
{ \left(1- \sqrt{ 2 } \right) }^{ 2 } - \frac{ 1 }{ \sqrt{ 2 } -1 }
Share
Copied to clipboard
1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{1}{\sqrt{2}-1}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
1-2\sqrt{2}+2-\frac{1}{\sqrt{2}-1}
The square of \sqrt{2} is 2.
3-2\sqrt{2}-\frac{1}{\sqrt{2}-1}
Add 1 and 2 to get 3.
3-2\sqrt{2}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}
Rationalize the denominator of \frac{1}{\sqrt{2}-1} by multiplying numerator and denominator by \sqrt{2}+1.
3-2\sqrt{2}-\frac{\sqrt{2}+1}{\left(\sqrt{2}\right)^{2}-1^{2}}
Consider \left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-2\sqrt{2}-\frac{\sqrt{2}+1}{2-1}
Square \sqrt{2}. Square 1.
3-2\sqrt{2}-\frac{\sqrt{2}+1}{1}
Subtract 1 from 2 to get 1.
3-2\sqrt{2}-\left(\sqrt{2}+1\right)
Anything divided by one gives itself.
3-2\sqrt{2}-\sqrt{2}-1
To find the opposite of \sqrt{2}+1, find the opposite of each term.
3-3\sqrt{2}-1
Combine -2\sqrt{2} and -\sqrt{2} to get -3\sqrt{2}.
2-3\sqrt{2}
Subtract 1 from 3 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}