Solve for x
x=-\frac{y+1}{1-y}
y\neq 1
Solve for y
y=-\frac{x+1}{1-x}
x\neq 1
Graph
Share
Copied to clipboard
1+2x+x^{2}+\left(1+y\right)^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}+1+2y+y^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+y\right)^{2}.
2+2x+x^{2}+2y+y^{2}=\left(x+y\right)^{2}
Add 1 and 1 to get 2.
2+2x+x^{2}+2y+y^{2}=x^{2}+2xy+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
2+2x+x^{2}+2y+y^{2}-x^{2}=2xy+y^{2}
Subtract x^{2} from both sides.
2+2x+2y+y^{2}=2xy+y^{2}
Combine x^{2} and -x^{2} to get 0.
2+2x+2y+y^{2}-2xy=y^{2}
Subtract 2xy from both sides.
2x+2y+y^{2}-2xy=y^{2}-2
Subtract 2 from both sides.
2x+y^{2}-2xy=y^{2}-2-2y
Subtract 2y from both sides.
2x-2xy=y^{2}-2-2y-y^{2}
Subtract y^{2} from both sides.
2x-2xy=-2-2y
Combine y^{2} and -y^{2} to get 0.
\left(2-2y\right)x=-2-2y
Combine all terms containing x.
\left(2-2y\right)x=-2y-2
The equation is in standard form.
\frac{\left(2-2y\right)x}{2-2y}=\frac{-2y-2}{2-2y}
Divide both sides by -2y+2.
x=\frac{-2y-2}{2-2y}
Dividing by -2y+2 undoes the multiplication by -2y+2.
x=-\frac{y+1}{1-y}
Divide -2-2y by -2y+2.
1+2x+x^{2}+\left(1+y\right)^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}+1+2y+y^{2}=\left(x+y\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+y\right)^{2}.
2+2x+x^{2}+2y+y^{2}=\left(x+y\right)^{2}
Add 1 and 1 to get 2.
2+2x+x^{2}+2y+y^{2}=x^{2}+2xy+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+y\right)^{2}.
2+2x+x^{2}+2y+y^{2}-2xy=x^{2}+y^{2}
Subtract 2xy from both sides.
2+2x+x^{2}+2y+y^{2}-2xy-y^{2}=x^{2}
Subtract y^{2} from both sides.
2+2x+x^{2}+2y-2xy=x^{2}
Combine y^{2} and -y^{2} to get 0.
2x+x^{2}+2y-2xy=x^{2}-2
Subtract 2 from both sides.
x^{2}+2y-2xy=x^{2}-2-2x
Subtract 2x from both sides.
2y-2xy=x^{2}-2-2x-x^{2}
Subtract x^{2} from both sides.
2y-2xy=-2-2x
Combine x^{2} and -x^{2} to get 0.
\left(2-2x\right)y=-2-2x
Combine all terms containing y.
\left(2-2x\right)y=-2x-2
The equation is in standard form.
\frac{\left(2-2x\right)y}{2-2x}=\frac{-2x-2}{2-2x}
Divide both sides by -2x+2.
y=\frac{-2x-2}{2-2x}
Dividing by -2x+2 undoes the multiplication by -2x+2.
y=-\frac{x+1}{1-x}
Divide -2-2x by -2x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}