Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

\left(1+2a+a^{2}\right)\left(60-35\right)\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+a\right)^{2}.
\left(1+2a+a^{2}\right)\times 25\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Subtract 35 from 60 to get 25.
\left(1+2a+a^{2}\right)\times 25\times 100=\frac{2400}{35-11}\left(60-35+11\right)
Divide 3500 by 35 to get 100.
\left(1+2a+a^{2}\right)\times 2500=\frac{2400}{35-11}\left(60-35+11\right)
Multiply 25 and 100 to get 2500.
2500+5000a+2500a^{2}=\frac{2400}{35-11}\left(60-35+11\right)
Use the distributive property to multiply 1+2a+a^{2} by 2500.
2500+5000a+2500a^{2}=\frac{2400}{24}\left(60-35+11\right)
Subtract 11 from 35 to get 24.
2500+5000a+2500a^{2}=100\left(60-35+11\right)
Divide 2400 by 24 to get 100.
2500+5000a+2500a^{2}=100\left(25+11\right)
Subtract 35 from 60 to get 25.
2500+5000a+2500a^{2}=100\times 36
Add 25 and 11 to get 36.
2500+5000a+2500a^{2}=3600
Multiply 100 and 36 to get 3600.
2500+5000a+2500a^{2}-3600=0
Subtract 3600 from both sides.
-1100+5000a+2500a^{2}=0
Subtract 3600 from 2500 to get -1100.
-11+50a+25a^{2}=0
Divide both sides by 100.
25a^{2}+50a-11=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=50 ab=25\left(-11\right)=-275
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25a^{2}+aa+ba-11. To find a and b, set up a system to be solved.
-1,275 -5,55 -11,25
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -275.
-1+275=274 -5+55=50 -11+25=14
Calculate the sum for each pair.
a=-5 b=55
The solution is the pair that gives sum 50.
\left(25a^{2}-5a\right)+\left(55a-11\right)
Rewrite 25a^{2}+50a-11 as \left(25a^{2}-5a\right)+\left(55a-11\right).
5a\left(5a-1\right)+11\left(5a-1\right)
Factor out 5a in the first and 11 in the second group.
\left(5a-1\right)\left(5a+11\right)
Factor out common term 5a-1 by using distributive property.
a=\frac{1}{5} a=-\frac{11}{5}
To find equation solutions, solve 5a-1=0 and 5a+11=0.
\left(1+2a+a^{2}\right)\left(60-35\right)\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+a\right)^{2}.
\left(1+2a+a^{2}\right)\times 25\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Subtract 35 from 60 to get 25.
\left(1+2a+a^{2}\right)\times 25\times 100=\frac{2400}{35-11}\left(60-35+11\right)
Divide 3500 by 35 to get 100.
\left(1+2a+a^{2}\right)\times 2500=\frac{2400}{35-11}\left(60-35+11\right)
Multiply 25 and 100 to get 2500.
2500+5000a+2500a^{2}=\frac{2400}{35-11}\left(60-35+11\right)
Use the distributive property to multiply 1+2a+a^{2} by 2500.
2500+5000a+2500a^{2}=\frac{2400}{24}\left(60-35+11\right)
Subtract 11 from 35 to get 24.
2500+5000a+2500a^{2}=100\left(60-35+11\right)
Divide 2400 by 24 to get 100.
2500+5000a+2500a^{2}=100\left(25+11\right)
Subtract 35 from 60 to get 25.
2500+5000a+2500a^{2}=100\times 36
Add 25 and 11 to get 36.
2500+5000a+2500a^{2}=3600
Multiply 100 and 36 to get 3600.
2500+5000a+2500a^{2}-3600=0
Subtract 3600 from both sides.
-1100+5000a+2500a^{2}=0
Subtract 3600 from 2500 to get -1100.
2500a^{2}+5000a-1100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-5000±\sqrt{5000^{2}-4\times 2500\left(-1100\right)}}{2\times 2500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2500 for a, 5000 for b, and -1100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-5000±\sqrt{25000000-4\times 2500\left(-1100\right)}}{2\times 2500}
Square 5000.
a=\frac{-5000±\sqrt{25000000-10000\left(-1100\right)}}{2\times 2500}
Multiply -4 times 2500.
a=\frac{-5000±\sqrt{25000000+11000000}}{2\times 2500}
Multiply -10000 times -1100.
a=\frac{-5000±\sqrt{36000000}}{2\times 2500}
Add 25000000 to 11000000.
a=\frac{-5000±6000}{2\times 2500}
Take the square root of 36000000.
a=\frac{-5000±6000}{5000}
Multiply 2 times 2500.
a=\frac{1000}{5000}
Now solve the equation a=\frac{-5000±6000}{5000} when ± is plus. Add -5000 to 6000.
a=\frac{1}{5}
Reduce the fraction \frac{1000}{5000} to lowest terms by extracting and canceling out 1000.
a=-\frac{11000}{5000}
Now solve the equation a=\frac{-5000±6000}{5000} when ± is minus. Subtract 6000 from -5000.
a=-\frac{11}{5}
Reduce the fraction \frac{-11000}{5000} to lowest terms by extracting and canceling out 1000.
a=\frac{1}{5} a=-\frac{11}{5}
The equation is now solved.
\left(1+2a+a^{2}\right)\left(60-35\right)\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+a\right)^{2}.
\left(1+2a+a^{2}\right)\times 25\times \frac{3500}{35}=\frac{2400}{35-11}\left(60-35+11\right)
Subtract 35 from 60 to get 25.
\left(1+2a+a^{2}\right)\times 25\times 100=\frac{2400}{35-11}\left(60-35+11\right)
Divide 3500 by 35 to get 100.
\left(1+2a+a^{2}\right)\times 2500=\frac{2400}{35-11}\left(60-35+11\right)
Multiply 25 and 100 to get 2500.
2500+5000a+2500a^{2}=\frac{2400}{35-11}\left(60-35+11\right)
Use the distributive property to multiply 1+2a+a^{2} by 2500.
2500+5000a+2500a^{2}=\frac{2400}{24}\left(60-35+11\right)
Subtract 11 from 35 to get 24.
2500+5000a+2500a^{2}=100\left(60-35+11\right)
Divide 2400 by 24 to get 100.
2500+5000a+2500a^{2}=100\left(25+11\right)
Subtract 35 from 60 to get 25.
2500+5000a+2500a^{2}=100\times 36
Add 25 and 11 to get 36.
2500+5000a+2500a^{2}=3600
Multiply 100 and 36 to get 3600.
5000a+2500a^{2}=3600-2500
Subtract 2500 from both sides.
5000a+2500a^{2}=1100
Subtract 2500 from 3600 to get 1100.
2500a^{2}+5000a=1100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2500a^{2}+5000a}{2500}=\frac{1100}{2500}
Divide both sides by 2500.
a^{2}+\frac{5000}{2500}a=\frac{1100}{2500}
Dividing by 2500 undoes the multiplication by 2500.
a^{2}+2a=\frac{1100}{2500}
Divide 5000 by 2500.
a^{2}+2a=\frac{11}{25}
Reduce the fraction \frac{1100}{2500} to lowest terms by extracting and canceling out 100.
a^{2}+2a+1^{2}=\frac{11}{25}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+2a+1=\frac{11}{25}+1
Square 1.
a^{2}+2a+1=\frac{36}{25}
Add \frac{11}{25} to 1.
\left(a+1\right)^{2}=\frac{36}{25}
Factor a^{2}+2a+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+1\right)^{2}}=\sqrt{\frac{36}{25}}
Take the square root of both sides of the equation.
a+1=\frac{6}{5} a+1=-\frac{6}{5}
Simplify.
a=\frac{1}{5} a=-\frac{11}{5}
Subtract 1 from both sides of the equation.