Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Add 1 and 3 to get 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Since \frac{\sqrt{3}}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
To raise \frac{\sqrt{3}+3}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Since \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Do the multiplications in \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Do the calculations in 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Expand 3^{2}.
1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
1+2\sqrt{3}+3+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
The square of \sqrt{3} is 3.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+1\right)^{2}
Add 1 and 3 to get 4.
4+2\sqrt{3}+\left(\frac{\sqrt{3}}{3}+\frac{3}{3}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{3}{3}.
4+2\sqrt{3}+\left(\frac{\sqrt{3}+3}{3}\right)^{2}
Since \frac{\sqrt{3}}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
4+2\sqrt{3}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
To raise \frac{\sqrt{3}+3}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}}+\frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4+2\sqrt{3} times \frac{3^{2}}{3^{2}}.
\frac{\left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}}{3^{2}}
Since \frac{\left(4+2\sqrt{3}\right)\times 3^{2}}{3^{2}} and \frac{\left(\sqrt{3}+3\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9}{3^{2}}
Do the multiplications in \left(4+2\sqrt{3}\right)\times 3^{2}+\left(\sqrt{3}+3\right)^{2}.
\frac{48+24\sqrt{3}}{3^{2}}
Do the calculations in 36+18\sqrt{3}+\left(\sqrt{3}\right)^{2}+6\sqrt{3}+9.
\frac{48+24\sqrt{3}}{9}
Expand 3^{2}.