Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\left(1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
\left(1+2\sqrt{2}+2\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\left(3+2\sqrt{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Add 1 and 2 to get 3.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+2\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Add 1 and 2 to get 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+3\right)\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-\sqrt{3}\right)^{2}
Add 1 and 3 to get 4.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Add 1 and 3 to get 4.
\left(9-4\left(\sqrt{2}\right)^{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Use the distributive property to multiply 3+2\sqrt{2} by 3-2\sqrt{2} and combine like terms.
\left(9-4\times 2\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
The square of \sqrt{2} is 2.
\left(9-8\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Multiply -4 and 2 to get -8.
1\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Subtract 8 from 9 to get 1.
\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Use the distributive property to multiply 1 by 4+2\sqrt{3}.
16-\left(2\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
16-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
16-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
16-4\times 3
The square of \sqrt{3} is 3.
16-12
Multiply 4 and 3 to get 12.
4
Subtract 12 from 16 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}