Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(1+2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{2}\right)^{2}.
\left(1+2\sqrt{2}+2\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\left(3+2\sqrt{2}\right)\left(1-\sqrt{2}\right)^{2}\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Add 1 and 2 to get 3.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{2}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(1-2\sqrt{2}+2\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+\sqrt{3}\right)^{2}\left(1-\sqrt{3}\right)^{2}
Add 1 and 2 to get 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(1-\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(1+2\sqrt{3}+3\right)\left(1-\sqrt{3}\right)^{2}
The square of \sqrt{3} is 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-\sqrt{3}\right)^{2}
Add 1 and 3 to get 4.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(1-2\sqrt{3}+3\right)
The square of \sqrt{3} is 3.
\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Add 1 and 3 to get 4.
\left(9-4\left(\sqrt{2}\right)^{2}\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Use the distributive property to multiply 3+2\sqrt{2} by 3-2\sqrt{2} and combine like terms.
\left(9-4\times 2\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
The square of \sqrt{2} is 2.
\left(9-8\right)\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Multiply -4 and 2 to get -8.
1\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Subtract 8 from 9 to get 1.
\left(4+2\sqrt{3}\right)\left(4-2\sqrt{3}\right)
Use the distributive property to multiply 1 by 4+2\sqrt{3}.
16-\left(2\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 4.
16-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
16-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
16-4\times 3
The square of \sqrt{3} is 3.
16-12
Multiply 4 and 3 to get 12.
4
Subtract 12 from 16 to get 4.