{ \left(1 \frac{ 102 }{ 2 \sqrt{ \frac{ 5 }{ } } } \right) }^{ 2 }
Evaluate
\frac{2601}{5}=520.2
Factor
\frac{3 ^ {2} \cdot 17 ^ {2}}{5} = 520\frac{1}{5} = 520.2
Share
Copied to clipboard
\left(1\times \frac{102}{2\sqrt{5}}\right)^{2}
Anything divided by one gives itself.
\left(1\times \frac{102\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{102}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(1\times \frac{102\sqrt{5}}{2\times 5}\right)^{2}
The square of \sqrt{5} is 5.
\left(1\times \frac{51\sqrt{5}}{5}\right)^{2}
Cancel out 2 in both numerator and denominator.
\left(\frac{51\sqrt{5}}{5}\right)^{2}
Express 1\times \frac{51\sqrt{5}}{5} as a single fraction.
\frac{\left(51\sqrt{5}\right)^{2}}{5^{2}}
To raise \frac{51\sqrt{5}}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{51^{2}\left(\sqrt{5}\right)^{2}}{5^{2}}
Expand \left(51\sqrt{5}\right)^{2}.
\frac{2601\left(\sqrt{5}\right)^{2}}{5^{2}}
Calculate 51 to the power of 2 and get 2601.
\frac{2601\times 5}{5^{2}}
The square of \sqrt{5} is 5.
\frac{13005}{5^{2}}
Multiply 2601 and 5 to get 13005.
\frac{13005}{25}
Calculate 5 to the power of 2 and get 25.
\frac{2601}{5}
Reduce the fraction \frac{13005}{25} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}