Solve for x
x=\frac{1}{4}=0.25
x=\frac{3}{7}\approx 0.428571429
Graph
Share
Copied to clipboard
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Multiply 0 and 5 to get 0.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Anything times zero gives zero.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Calculate 0 to the power of 2 and get 0.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-15x\right)^{2}.
25-150x+225x^{2}=\left(1+x\right)^{2}
Add 0 and 25 to get 25.
25-150x+225x^{2}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
25-150x+225x^{2}-1=2x+x^{2}
Subtract 1 from both sides.
24-150x+225x^{2}=2x+x^{2}
Subtract 1 from 25 to get 24.
24-150x+225x^{2}-2x=x^{2}
Subtract 2x from both sides.
24-152x+225x^{2}=x^{2}
Combine -150x and -2x to get -152x.
24-152x+225x^{2}-x^{2}=0
Subtract x^{2} from both sides.
24-152x+224x^{2}=0
Combine 225x^{2} and -x^{2} to get 224x^{2}.
224x^{2}-152x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-152\right)±\sqrt{\left(-152\right)^{2}-4\times 224\times 24}}{2\times 224}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 224 for a, -152 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-152\right)±\sqrt{23104-4\times 224\times 24}}{2\times 224}
Square -152.
x=\frac{-\left(-152\right)±\sqrt{23104-896\times 24}}{2\times 224}
Multiply -4 times 224.
x=\frac{-\left(-152\right)±\sqrt{23104-21504}}{2\times 224}
Multiply -896 times 24.
x=\frac{-\left(-152\right)±\sqrt{1600}}{2\times 224}
Add 23104 to -21504.
x=\frac{-\left(-152\right)±40}{2\times 224}
Take the square root of 1600.
x=\frac{152±40}{2\times 224}
The opposite of -152 is 152.
x=\frac{152±40}{448}
Multiply 2 times 224.
x=\frac{192}{448}
Now solve the equation x=\frac{152±40}{448} when ± is plus. Add 152 to 40.
x=\frac{3}{7}
Reduce the fraction \frac{192}{448} to lowest terms by extracting and canceling out 64.
x=\frac{112}{448}
Now solve the equation x=\frac{152±40}{448} when ± is minus. Subtract 40 from 152.
x=\frac{1}{4}
Reduce the fraction \frac{112}{448} to lowest terms by extracting and canceling out 112.
x=\frac{3}{7} x=\frac{1}{4}
The equation is now solved.
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Multiply 0 and 5 to get 0.
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Anything times zero gives zero.
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
Calculate 0 to the power of 2 and get 0.
0+25-150x+225x^{2}=\left(1+x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-15x\right)^{2}.
25-150x+225x^{2}=\left(1+x\right)^{2}
Add 0 and 25 to get 25.
25-150x+225x^{2}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
25-150x+225x^{2}-2x=1+x^{2}
Subtract 2x from both sides.
25-152x+225x^{2}=1+x^{2}
Combine -150x and -2x to get -152x.
25-152x+225x^{2}-x^{2}=1
Subtract x^{2} from both sides.
25-152x+224x^{2}=1
Combine 225x^{2} and -x^{2} to get 224x^{2}.
-152x+224x^{2}=1-25
Subtract 25 from both sides.
-152x+224x^{2}=-24
Subtract 25 from 1 to get -24.
224x^{2}-152x=-24
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{224x^{2}-152x}{224}=-\frac{24}{224}
Divide both sides by 224.
x^{2}+\left(-\frac{152}{224}\right)x=-\frac{24}{224}
Dividing by 224 undoes the multiplication by 224.
x^{2}-\frac{19}{28}x=-\frac{24}{224}
Reduce the fraction \frac{-152}{224} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{19}{28}x=-\frac{3}{28}
Reduce the fraction \frac{-24}{224} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{19}{28}x+\left(-\frac{19}{56}\right)^{2}=-\frac{3}{28}+\left(-\frac{19}{56}\right)^{2}
Divide -\frac{19}{28}, the coefficient of the x term, by 2 to get -\frac{19}{56}. Then add the square of -\frac{19}{56} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{3}{28}+\frac{361}{3136}
Square -\frac{19}{56} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{28}x+\frac{361}{3136}=\frac{25}{3136}
Add -\frac{3}{28} to \frac{361}{3136} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{56}\right)^{2}=\frac{25}{3136}
Factor x^{2}-\frac{19}{28}x+\frac{361}{3136}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{56}\right)^{2}}=\sqrt{\frac{25}{3136}}
Take the square root of both sides of the equation.
x-\frac{19}{56}=\frac{5}{56} x-\frac{19}{56}=-\frac{5}{56}
Simplify.
x=\frac{3}{7} x=\frac{1}{4}
Add \frac{19}{56} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}