Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.5^{2}\left(\sqrt{3}\right)^{2}x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Expand \left(0.5\sqrt{3}x\right)^{2}.
0.25\left(\sqrt{3}\right)^{2}x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Calculate 0.5 to the power of 2 and get 0.25.
0.25\times 3x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
The square of \sqrt{3} is 3.
0.75x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Multiply 0.25 and 3 to get 0.75.
0.75x^{2}+25-15x+2.25x^{2}=\left(1+x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-1.5x\right)^{2}.
3x^{2}+25-15x=\left(1+x\right)^{2}
Combine 0.75x^{2} and 2.25x^{2} to get 3x^{2}.
3x^{2}+25-15x=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
3x^{2}+25-15x-1=2x+x^{2}
Subtract 1 from both sides.
3x^{2}+24-15x=2x+x^{2}
Subtract 1 from 25 to get 24.
3x^{2}+24-15x-2x=x^{2}
Subtract 2x from both sides.
3x^{2}+24-17x=x^{2}
Combine -15x and -2x to get -17x.
3x^{2}+24-17x-x^{2}=0
Subtract x^{2} from both sides.
2x^{2}+24-17x=0
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-17x+24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 2\times 24}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -17 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 2\times 24}}{2\times 2}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-8\times 24}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-17\right)±\sqrt{289-192}}{2\times 2}
Multiply -8 times 24.
x=\frac{-\left(-17\right)±\sqrt{97}}{2\times 2}
Add 289 to -192.
x=\frac{17±\sqrt{97}}{2\times 2}
The opposite of -17 is 17.
x=\frac{17±\sqrt{97}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{97}+17}{4}
Now solve the equation x=\frac{17±\sqrt{97}}{4} when ± is plus. Add 17 to \sqrt{97}.
x=\frac{17-\sqrt{97}}{4}
Now solve the equation x=\frac{17±\sqrt{97}}{4} when ± is minus. Subtract \sqrt{97} from 17.
x=\frac{\sqrt{97}+17}{4} x=\frac{17-\sqrt{97}}{4}
The equation is now solved.
0.5^{2}\left(\sqrt{3}\right)^{2}x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Expand \left(0.5\sqrt{3}x\right)^{2}.
0.25\left(\sqrt{3}\right)^{2}x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Calculate 0.5 to the power of 2 and get 0.25.
0.25\times 3x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
The square of \sqrt{3} is 3.
0.75x^{2}+\left(5-1.5x\right)^{2}=\left(1+x\right)^{2}
Multiply 0.25 and 3 to get 0.75.
0.75x^{2}+25-15x+2.25x^{2}=\left(1+x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-1.5x\right)^{2}.
3x^{2}+25-15x=\left(1+x\right)^{2}
Combine 0.75x^{2} and 2.25x^{2} to get 3x^{2}.
3x^{2}+25-15x=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
3x^{2}+25-15x-2x=1+x^{2}
Subtract 2x from both sides.
3x^{2}+25-17x=1+x^{2}
Combine -15x and -2x to get -17x.
3x^{2}+25-17x-x^{2}=1
Subtract x^{2} from both sides.
2x^{2}+25-17x=1
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-17x=1-25
Subtract 25 from both sides.
2x^{2}-17x=-24
Subtract 25 from 1 to get -24.
\frac{2x^{2}-17x}{2}=-\frac{24}{2}
Divide both sides by 2.
x^{2}-\frac{17}{2}x=-\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{17}{2}x=-12
Divide -24 by 2.
x^{2}-\frac{17}{2}x+\left(-\frac{17}{4}\right)^{2}=-12+\left(-\frac{17}{4}\right)^{2}
Divide -\frac{17}{2}, the coefficient of the x term, by 2 to get -\frac{17}{4}. Then add the square of -\frac{17}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{2}x+\frac{289}{16}=-12+\frac{289}{16}
Square -\frac{17}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{2}x+\frac{289}{16}=\frac{97}{16}
Add -12 to \frac{289}{16}.
\left(x-\frac{17}{4}\right)^{2}=\frac{97}{16}
Factor x^{2}-\frac{17}{2}x+\frac{289}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{4}\right)^{2}}=\sqrt{\frac{97}{16}}
Take the square root of both sides of the equation.
x-\frac{17}{4}=\frac{\sqrt{97}}{4} x-\frac{17}{4}=-\frac{\sqrt{97}}{4}
Simplify.
x=\frac{\sqrt{97}+17}{4} x=\frac{17-\sqrt{97}}{4}
Add \frac{17}{4} to both sides of the equation.