Solve for x
x = \frac{600 \sqrt{1747} - 5400}{833} \approx 23.623382296
x=\frac{-600\sqrt{1747}-5400}{833}\approx -36.588568371
Graph
Share
Copied to clipboard
0.01\left(\sqrt{2}\right)^{2}x^{2}-6\sqrt{2}x\sqrt{2}+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.1\sqrt{2}x-30\sqrt{2}\right)^{2}.
0.01\left(\sqrt{2}\right)^{2}x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
0.01\times 2x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
The square of \sqrt{2} is 2.
0.02x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply 0.01 and 2 to get 0.02.
0.02x^{2}-12x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply -6 and 2 to get -12.
0.02x^{2}-12x+900\times 2+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
The square of \sqrt{2} is 2.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply 900 and 2 to get 1800.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=3600+1200x+100x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(60+10x\right)^{2}.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}-3600=1200x+100x^{2}
Subtract 3600 from both sides.
0.02x^{2}-12x-1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=1200x+100x^{2}
Subtract 3600 from 1800 to get -1800.
0.02x^{2}-12x-1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}-1200x=100x^{2}
Subtract 1200x from both sides.
0.02x^{2}-1212x-1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=100x^{2}
Combine -12x and -1200x to get -1212x.
0.02x^{2}-1212x-1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}-100x^{2}=0
Subtract 100x^{2} from both sides.
-99.98x^{2}-1212x-1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=0
Combine 0.02x^{2} and -100x^{2} to get -99.98x^{2}.
-99.98x^{2}-1212x-1800+44100\left(\sqrt{2}\right)^{2}-42\sqrt{2}\sqrt{2}x+0.01\left(\sqrt{2}\right)^{2}x^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}.
-99.98x^{2}-1212x-1800+44100\left(\sqrt{2}\right)^{2}-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=0
Multiply \sqrt{2} and \sqrt{2} to get 2.
-99.98x^{2}-1212x-1800+44100\times 2-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=0
The square of \sqrt{2} is 2.
-99.98x^{2}-1212x-1800+88200-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=0
Multiply 44100 and 2 to get 88200.
-99.98x^{2}-1212x-1800+88200-84x+0.01\left(\sqrt{2}\right)^{2}x^{2}=0
Multiply -42 and 2 to get -84.
-99.98x^{2}-1212x-1800+88200-84x+0.01\times 2x^{2}=0
The square of \sqrt{2} is 2.
-99.98x^{2}-1212x-1800+88200-84x+0.02x^{2}=0
Multiply 0.01 and 2 to get 0.02.
-99.98x^{2}-1212x+86400-84x+0.02x^{2}=0
Add -1800 and 88200 to get 86400.
-99.98x^{2}-1296x+86400+0.02x^{2}=0
Combine -1212x and -84x to get -1296x.
-99.96x^{2}-1296x+86400=0
Combine -99.98x^{2} and 0.02x^{2} to get -99.96x^{2}.
x=\frac{-\left(-1296\right)±\sqrt{\left(-1296\right)^{2}-4\left(-99.96\right)\times 86400}}{2\left(-99.96\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -99.96 for a, -1296 for b, and 86400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1296\right)±\sqrt{1679616-4\left(-99.96\right)\times 86400}}{2\left(-99.96\right)}
Square -1296.
x=\frac{-\left(-1296\right)±\sqrt{1679616+399.84\times 86400}}{2\left(-99.96\right)}
Multiply -4 times -99.96.
x=\frac{-\left(-1296\right)±\sqrt{1679616+34546176}}{2\left(-99.96\right)}
Multiply 399.84 times 86400.
x=\frac{-\left(-1296\right)±\sqrt{36225792}}{2\left(-99.96\right)}
Add 1679616 to 34546176.
x=\frac{-\left(-1296\right)±144\sqrt{1747}}{2\left(-99.96\right)}
Take the square root of 36225792.
x=\frac{1296±144\sqrt{1747}}{2\left(-99.96\right)}
The opposite of -1296 is 1296.
x=\frac{1296±144\sqrt{1747}}{-199.92}
Multiply 2 times -99.96.
x=\frac{144\sqrt{1747}+1296}{-199.92}
Now solve the equation x=\frac{1296±144\sqrt{1747}}{-199.92} when ± is plus. Add 1296 to 144\sqrt{1747}.
x=\frac{-600\sqrt{1747}-5400}{833}
Divide 1296+144\sqrt{1747} by -199.92 by multiplying 1296+144\sqrt{1747} by the reciprocal of -199.92.
x=\frac{1296-144\sqrt{1747}}{-199.92}
Now solve the equation x=\frac{1296±144\sqrt{1747}}{-199.92} when ± is minus. Subtract 144\sqrt{1747} from 1296.
x=\frac{600\sqrt{1747}-5400}{833}
Divide 1296-144\sqrt{1747} by -199.92 by multiplying 1296-144\sqrt{1747} by the reciprocal of -199.92.
x=\frac{-600\sqrt{1747}-5400}{833} x=\frac{600\sqrt{1747}-5400}{833}
The equation is now solved.
0.01\left(\sqrt{2}\right)^{2}x^{2}-6\sqrt{2}x\sqrt{2}+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(0.1\sqrt{2}x-30\sqrt{2}\right)^{2}.
0.01\left(\sqrt{2}\right)^{2}x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
0.01\times 2x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
The square of \sqrt{2} is 2.
0.02x^{2}-6\times 2x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply 0.01 and 2 to get 0.02.
0.02x^{2}-12x+900\left(\sqrt{2}\right)^{2}+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply -6 and 2 to get -12.
0.02x^{2}-12x+900\times 2+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
The square of \sqrt{2} is 2.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=\left(60+10x\right)^{2}
Multiply 900 and 2 to get 1800.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=3600+1200x+100x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(60+10x\right)^{2}.
0.02x^{2}-12x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}-1200x=3600+100x^{2}
Subtract 1200x from both sides.
0.02x^{2}-1212x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=3600+100x^{2}
Combine -12x and -1200x to get -1212x.
0.02x^{2}-1212x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}-100x^{2}=3600
Subtract 100x^{2} from both sides.
-99.98x^{2}-1212x+1800+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=3600
Combine 0.02x^{2} and -100x^{2} to get -99.98x^{2}.
-99.98x^{2}-1212x+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=3600-1800
Subtract 1800 from both sides.
-99.98x^{2}-1212x+\left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}=1800
Subtract 1800 from 3600 to get 1800.
-99.98x^{2}-1212x+44100\left(\sqrt{2}\right)^{2}-42\sqrt{2}\sqrt{2}x+0.01\left(\sqrt{2}\right)^{2}x^{2}=1800
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(210\sqrt{2}-0.1\sqrt{2}x\right)^{2}.
-99.98x^{2}-1212x+44100\left(\sqrt{2}\right)^{2}-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=1800
Multiply \sqrt{2} and \sqrt{2} to get 2.
-99.98x^{2}-1212x+44100\times 2-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=1800
The square of \sqrt{2} is 2.
-99.98x^{2}-1212x+88200-42\times 2x+0.01\left(\sqrt{2}\right)^{2}x^{2}=1800
Multiply 44100 and 2 to get 88200.
-99.98x^{2}-1212x+88200-84x+0.01\left(\sqrt{2}\right)^{2}x^{2}=1800
Multiply -42 and 2 to get -84.
-99.98x^{2}-1212x+88200-84x+0.01\times 2x^{2}=1800
The square of \sqrt{2} is 2.
-99.98x^{2}-1212x+88200-84x+0.02x^{2}=1800
Multiply 0.01 and 2 to get 0.02.
-99.98x^{2}-1296x+88200+0.02x^{2}=1800
Combine -1212x and -84x to get -1296x.
-99.96x^{2}-1296x+88200=1800
Combine -99.98x^{2} and 0.02x^{2} to get -99.96x^{2}.
-99.96x^{2}-1296x=1800-88200
Subtract 88200 from both sides.
-99.96x^{2}-1296x=-86400
Subtract 88200 from 1800 to get -86400.
\frac{-99.96x^{2}-1296x}{-99.96}=-\frac{86400}{-99.96}
Divide both sides of the equation by -99.96, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{1296}{-99.96}\right)x=-\frac{86400}{-99.96}
Dividing by -99.96 undoes the multiplication by -99.96.
x^{2}+\frac{10800}{833}x=-\frac{86400}{-99.96}
Divide -1296 by -99.96 by multiplying -1296 by the reciprocal of -99.96.
x^{2}+\frac{10800}{833}x=\frac{720000}{833}
Divide -86400 by -99.96 by multiplying -86400 by the reciprocal of -99.96.
x^{2}+\frac{10800}{833}x+\frac{5400}{833}^{2}=\frac{720000}{833}+\frac{5400}{833}^{2}
Divide \frac{10800}{833}, the coefficient of the x term, by 2 to get \frac{5400}{833}. Then add the square of \frac{5400}{833} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{10800}{833}x+\frac{29160000}{693889}=\frac{720000}{833}+\frac{29160000}{693889}
Square \frac{5400}{833} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{10800}{833}x+\frac{29160000}{693889}=\frac{628920000}{693889}
Add \frac{720000}{833} to \frac{29160000}{693889} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5400}{833}\right)^{2}=\frac{628920000}{693889}
Factor x^{2}+\frac{10800}{833}x+\frac{29160000}{693889}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5400}{833}\right)^{2}}=\sqrt{\frac{628920000}{693889}}
Take the square root of both sides of the equation.
x+\frac{5400}{833}=\frac{600\sqrt{1747}}{833} x+\frac{5400}{833}=-\frac{600\sqrt{1747}}{833}
Simplify.
x=\frac{600\sqrt{1747}-5400}{833} x=\frac{-600\sqrt{1747}-5400}{833}
Subtract \frac{5400}{833} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}