Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-6\right)^{2}\left(\sqrt{6}\right)^{2}x^{2}-44\left(6x^{2}-18\right)>0
Expand \left(-6\sqrt{6}x\right)^{2}.
36\left(\sqrt{6}\right)^{2}x^{2}-44\left(6x^{2}-18\right)>0
Calculate -6 to the power of 2 and get 36.
36\times 6x^{2}-44\left(6x^{2}-18\right)>0
The square of \sqrt{6} is 6.
216x^{2}-44\left(6x^{2}-18\right)>0
Multiply 36 and 6 to get 216.
216x^{2}-264x^{2}+792>0
Use the distributive property to multiply -44 by 6x^{2}-18.
-48x^{2}+792>0
Combine 216x^{2} and -264x^{2} to get -48x^{2}.
48x^{2}-792<0
Multiply the inequality by -1 to make the coefficient of the highest power in -48x^{2}+792 positive. Since -1 is negative, the inequality direction is changed.
x^{2}<\frac{33}{2}
Add \frac{33}{2} to both sides.
x^{2}<\left(\frac{\sqrt{66}}{2}\right)^{2}
Calculate the square root of \frac{33}{2} and get \frac{\sqrt{66}}{2}. Rewrite \frac{33}{2} as \left(\frac{\sqrt{66}}{2}\right)^{2}.
|x|<\frac{\sqrt{66}}{2}
Inequality holds for |x|<\frac{\sqrt{66}}{2}.
x\in \left(-\frac{\sqrt{66}}{2},\frac{\sqrt{66}}{2}\right)
Rewrite |x|<\frac{\sqrt{66}}{2} as x\in \left(-\frac{\sqrt{66}}{2},\frac{\sqrt{66}}{2}\right).