Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-5\right)^{2}x^{2}\left(-2x\right)^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Expand \left(-5x\right)^{2}.
25x^{2}\left(-2x\right)^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Calculate -5 to the power of 2 and get 25.
25x^{2}\left(-2\right)^{3}x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Expand \left(-2x\right)^{3}.
25x^{2}\left(-8\right)x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Calculate -2 to the power of 3 and get -8.
-200x^{2}x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Multiply 25 and -8 to get -200.
-200x^{5}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
-200x^{5}-\left(\frac{1}{2}\right)^{2}x^{2}\left(-2x\right)^{3}
Expand \left(\frac{1}{2}x\right)^{2}.
-200x^{5}-\frac{1}{4}x^{2}\left(-2x\right)^{3}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
-200x^{5}-\frac{1}{4}x^{2}\left(-2\right)^{3}x^{3}
Expand \left(-2x\right)^{3}.
-200x^{5}-\frac{1}{4}x^{2}\left(-8\right)x^{3}
Calculate -2 to the power of 3 and get -8.
-200x^{5}-\left(-2x^{2}x^{3}\right)
Multiply \frac{1}{4} and -8 to get -2.
-200x^{5}-\left(-2x^{5}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
-200x^{5}+2x^{5}
The opposite of -2x^{5} is 2x^{5}.
-198x^{5}
Combine -200x^{5} and 2x^{5} to get -198x^{5}.
\left(-5\right)^{2}x^{2}\left(-2x\right)^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Expand \left(-5x\right)^{2}.
25x^{2}\left(-2x\right)^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Calculate -5 to the power of 2 and get 25.
25x^{2}\left(-2\right)^{3}x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Expand \left(-2x\right)^{3}.
25x^{2}\left(-8\right)x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Calculate -2 to the power of 3 and get -8.
-200x^{2}x^{3}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
Multiply 25 and -8 to get -200.
-200x^{5}-\left(\frac{1}{2}x\right)^{2}\left(-2x\right)^{3}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
-200x^{5}-\left(\frac{1}{2}\right)^{2}x^{2}\left(-2x\right)^{3}
Expand \left(\frac{1}{2}x\right)^{2}.
-200x^{5}-\frac{1}{4}x^{2}\left(-2x\right)^{3}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
-200x^{5}-\frac{1}{4}x^{2}\left(-2\right)^{3}x^{3}
Expand \left(-2x\right)^{3}.
-200x^{5}-\frac{1}{4}x^{2}\left(-8\right)x^{3}
Calculate -2 to the power of 3 and get -8.
-200x^{5}-\left(-2x^{2}x^{3}\right)
Multiply \frac{1}{4} and -8 to get -2.
-200x^{5}-\left(-2x^{5}\right)
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
-200x^{5}+2x^{5}
The opposite of -2x^{5} is 2x^{5}.
-198x^{5}
Combine -200x^{5} and 2x^{5} to get -198x^{5}.