Solve for x
x=\frac{3\sqrt{889}+1}{200}\approx 0.452241545
x=\frac{1-3\sqrt{889}}{200}\approx -0.442241545
Graph
Share
Copied to clipboard
\left(-50\right)^{2}x^{2}-25x-500=0
Expand \left(-50x\right)^{2}.
2500x^{2}-25x-500=0
Calculate -50 to the power of 2 and get 2500.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 2500\left(-500\right)}}{2\times 2500}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2500 for a, -25 for b, and -500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 2500\left(-500\right)}}{2\times 2500}
Square -25.
x=\frac{-\left(-25\right)±\sqrt{625-10000\left(-500\right)}}{2\times 2500}
Multiply -4 times 2500.
x=\frac{-\left(-25\right)±\sqrt{625+5000000}}{2\times 2500}
Multiply -10000 times -500.
x=\frac{-\left(-25\right)±\sqrt{5000625}}{2\times 2500}
Add 625 to 5000000.
x=\frac{-\left(-25\right)±75\sqrt{889}}{2\times 2500}
Take the square root of 5000625.
x=\frac{25±75\sqrt{889}}{2\times 2500}
The opposite of -25 is 25.
x=\frac{25±75\sqrt{889}}{5000}
Multiply 2 times 2500.
x=\frac{75\sqrt{889}+25}{5000}
Now solve the equation x=\frac{25±75\sqrt{889}}{5000} when ± is plus. Add 25 to 75\sqrt{889}.
x=\frac{3\sqrt{889}+1}{200}
Divide 25+75\sqrt{889} by 5000.
x=\frac{25-75\sqrt{889}}{5000}
Now solve the equation x=\frac{25±75\sqrt{889}}{5000} when ± is minus. Subtract 75\sqrt{889} from 25.
x=\frac{1-3\sqrt{889}}{200}
Divide 25-75\sqrt{889} by 5000.
x=\frac{3\sqrt{889}+1}{200} x=\frac{1-3\sqrt{889}}{200}
The equation is now solved.
\left(-50\right)^{2}x^{2}-25x-500=0
Expand \left(-50x\right)^{2}.
2500x^{2}-25x-500=0
Calculate -50 to the power of 2 and get 2500.
2500x^{2}-25x=500
Add 500 to both sides. Anything plus zero gives itself.
\frac{2500x^{2}-25x}{2500}=\frac{500}{2500}
Divide both sides by 2500.
x^{2}+\left(-\frac{25}{2500}\right)x=\frac{500}{2500}
Dividing by 2500 undoes the multiplication by 2500.
x^{2}-\frac{1}{100}x=\frac{500}{2500}
Reduce the fraction \frac{-25}{2500} to lowest terms by extracting and canceling out 25.
x^{2}-\frac{1}{100}x=\frac{1}{5}
Reduce the fraction \frac{500}{2500} to lowest terms by extracting and canceling out 500.
x^{2}-\frac{1}{100}x+\left(-\frac{1}{200}\right)^{2}=\frac{1}{5}+\left(-\frac{1}{200}\right)^{2}
Divide -\frac{1}{100}, the coefficient of the x term, by 2 to get -\frac{1}{200}. Then add the square of -\frac{1}{200} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{100}x+\frac{1}{40000}=\frac{1}{5}+\frac{1}{40000}
Square -\frac{1}{200} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{100}x+\frac{1}{40000}=\frac{8001}{40000}
Add \frac{1}{5} to \frac{1}{40000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{200}\right)^{2}=\frac{8001}{40000}
Factor x^{2}-\frac{1}{100}x+\frac{1}{40000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{200}\right)^{2}}=\sqrt{\frac{8001}{40000}}
Take the square root of both sides of the equation.
x-\frac{1}{200}=\frac{3\sqrt{889}}{200} x-\frac{1}{200}=-\frac{3\sqrt{889}}{200}
Simplify.
x=\frac{3\sqrt{889}+1}{200} x=\frac{1-3\sqrt{889}}{200}
Add \frac{1}{200} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}