Solve for x
x=\frac{2y}{9}+\frac{5}{6}
Solve for y
y=\frac{9x}{2}-\frac{15}{4}
Graph
Share
Copied to clipboard
9+6x+x^{2}+\left(4-y\right)^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
9+6x+x^{2}+16-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-y\right)^{2}.
25+6x+x^{2}-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Add 9 and 16 to get 25.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+4-4y+y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-y\right)^{2}.
25+6x+x^{2}-8y+y^{2}=40-12x+x^{2}-4y+y^{2}
Add 36 and 4 to get 40.
25+6x+x^{2}-8y+y^{2}+12x=40+x^{2}-4y+y^{2}
Add 12x to both sides.
25+18x+x^{2}-8y+y^{2}=40+x^{2}-4y+y^{2}
Combine 6x and 12x to get 18x.
25+18x+x^{2}-8y+y^{2}-x^{2}=40-4y+y^{2}
Subtract x^{2} from both sides.
25+18x-8y+y^{2}=40-4y+y^{2}
Combine x^{2} and -x^{2} to get 0.
18x-8y+y^{2}=40-4y+y^{2}-25
Subtract 25 from both sides.
18x-8y+y^{2}=15-4y+y^{2}
Subtract 25 from 40 to get 15.
18x+y^{2}=15-4y+y^{2}+8y
Add 8y to both sides.
18x+y^{2}=15+4y+y^{2}
Combine -4y and 8y to get 4y.
18x=15+4y+y^{2}-y^{2}
Subtract y^{2} from both sides.
18x=15+4y
Combine y^{2} and -y^{2} to get 0.
18x=4y+15
The equation is in standard form.
\frac{18x}{18}=\frac{4y+15}{18}
Divide both sides by 18.
x=\frac{4y+15}{18}
Dividing by 18 undoes the multiplication by 18.
x=\frac{2y}{9}+\frac{5}{6}
Divide 15+4y by 18.
9+6x+x^{2}+\left(4-y\right)^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-3-x\right)^{2}.
9+6x+x^{2}+16-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-y\right)^{2}.
25+6x+x^{2}-8y+y^{2}=\left(6-x\right)^{2}+\left(2-y\right)^{2}
Add 9 and 16 to get 25.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+\left(2-y\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-x\right)^{2}.
25+6x+x^{2}-8y+y^{2}=36-12x+x^{2}+4-4y+y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-y\right)^{2}.
25+6x+x^{2}-8y+y^{2}=40-12x+x^{2}-4y+y^{2}
Add 36 and 4 to get 40.
25+6x+x^{2}-8y+y^{2}+4y=40-12x+x^{2}+y^{2}
Add 4y to both sides.
25+6x+x^{2}-4y+y^{2}=40-12x+x^{2}+y^{2}
Combine -8y and 4y to get -4y.
25+6x+x^{2}-4y+y^{2}-y^{2}=40-12x+x^{2}
Subtract y^{2} from both sides.
25+6x+x^{2}-4y=40-12x+x^{2}
Combine y^{2} and -y^{2} to get 0.
6x+x^{2}-4y=40-12x+x^{2}-25
Subtract 25 from both sides.
6x+x^{2}-4y=15-12x+x^{2}
Subtract 25 from 40 to get 15.
x^{2}-4y=15-12x+x^{2}-6x
Subtract 6x from both sides.
x^{2}-4y=15-18x+x^{2}
Combine -12x and -6x to get -18x.
-4y=15-18x+x^{2}-x^{2}
Subtract x^{2} from both sides.
-4y=15-18x
Combine x^{2} and -x^{2} to get 0.
\frac{-4y}{-4}=\frac{15-18x}{-4}
Divide both sides by -4.
y=\frac{15-18x}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{9x}{2}-\frac{15}{4}
Divide 15-18x by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}