Evaluate
7\left(x-2\right)\left(x+1\right)
Expand
7x^{2}-7x-14
Graph
Share
Copied to clipboard
4x^{2}-4x+1+x\left(x-2\right)+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+1\right)^{2}.
4x^{2}-4x+1+x^{2}-2x+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Use the distributive property to multiply x by x-2.
5x^{2}-4x+1-2x+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Combine 4x^{2} and x^{2} to get 5x^{2}.
5x^{2}-6x+1+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Combine -4x and -2x to get -6x.
5x^{2}-6x+1+x^{2}-x-6-\left(3-x\right)\left(3+x\right)
Use the distributive property to multiply x+2 by x-3 and combine like terms.
6x^{2}-6x+1-x-6-\left(3-x\right)\left(3+x\right)
Combine 5x^{2} and x^{2} to get 6x^{2}.
6x^{2}-7x+1-6-\left(3-x\right)\left(3+x\right)
Combine -6x and -x to get -7x.
6x^{2}-7x-5-\left(3-x\right)\left(3+x\right)
Subtract 6 from 1 to get -5.
6x^{2}-7x-5-\left(9-x^{2}\right)
Consider \left(3-x\right)\left(3+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
6x^{2}-7x-5-9+x^{2}
To find the opposite of 9-x^{2}, find the opposite of each term.
6x^{2}-7x-14+x^{2}
Subtract 9 from -5 to get -14.
7x^{2}-7x-14
Combine 6x^{2} and x^{2} to get 7x^{2}.
4x^{2}-4x+1+x\left(x-2\right)+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+1\right)^{2}.
4x^{2}-4x+1+x^{2}-2x+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Use the distributive property to multiply x by x-2.
5x^{2}-4x+1-2x+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Combine 4x^{2} and x^{2} to get 5x^{2}.
5x^{2}-6x+1+\left(x+2\right)\left(x-3\right)-\left(3-x\right)\left(3+x\right)
Combine -4x and -2x to get -6x.
5x^{2}-6x+1+x^{2}-x-6-\left(3-x\right)\left(3+x\right)
Use the distributive property to multiply x+2 by x-3 and combine like terms.
6x^{2}-6x+1-x-6-\left(3-x\right)\left(3+x\right)
Combine 5x^{2} and x^{2} to get 6x^{2}.
6x^{2}-7x+1-6-\left(3-x\right)\left(3+x\right)
Combine -6x and -x to get -7x.
6x^{2}-7x-5-\left(3-x\right)\left(3+x\right)
Subtract 6 from 1 to get -5.
6x^{2}-7x-5-\left(9-x^{2}\right)
Consider \left(3-x\right)\left(3+x\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
6x^{2}-7x-5-9+x^{2}
To find the opposite of 9-x^{2}, find the opposite of each term.
6x^{2}-7x-14+x^{2}
Subtract 9 from -5 to get -14.
7x^{2}-7x-14
Combine 6x^{2} and x^{2} to get 7x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}