Evaluate
\frac{22\sqrt{61}+394}{9}\approx 62.869499208
Factor
\frac{2 {(11 \sqrt{61} + 197)}}{9} = 62.869499207771824
Share
Copied to clipboard
\left(-\frac{2\times 3}{3}-\frac{-1-\sqrt{61}}{3}\right)^{2}+\left(\frac{1}{\frac{1}{\frac{-8-2\sqrt{61}}{3}}}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2 times \frac{3}{3}.
\left(\frac{-2\times 3-\left(-1-\sqrt{61}\right)}{3}\right)^{2}+\left(\frac{1}{\frac{1}{\frac{-8-2\sqrt{61}}{3}}}\right)^{2}
Since -\frac{2\times 3}{3} and \frac{-1-\sqrt{61}}{3} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{-6+1+\sqrt{61}}{3}\right)^{2}+\left(\frac{1}{\frac{1}{\frac{-8-2\sqrt{61}}{3}}}\right)^{2}
Do the multiplications in -2\times 3-\left(-1-\sqrt{61}\right).
\left(\frac{-5+\sqrt{61}}{3}\right)^{2}+\left(\frac{1}{\frac{1}{\frac{-8-2\sqrt{61}}{3}}}\right)^{2}
Do the calculations in -6+1+\sqrt{61}.
\frac{\left(-5+\sqrt{61}\right)^{2}}{3^{2}}+\left(\frac{1}{\frac{1}{\frac{-8-2\sqrt{61}}{3}}}\right)^{2}
To raise \frac{-5+\sqrt{61}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-5+\sqrt{61}\right)^{2}}{3^{2}}+\left(\frac{-8-2\sqrt{61}}{3}\right)^{2}
Divide 1 by \frac{1}{\frac{-8-2\sqrt{61}}{3}} by multiplying 1 by the reciprocal of \frac{1}{\frac{-8-2\sqrt{61}}{3}}.
\frac{\left(-5+\sqrt{61}\right)^{2}}{3^{2}}+\frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
To raise \frac{-8-2\sqrt{61}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(-5+\sqrt{61}\right)^{2}+\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
Since \frac{\left(-5+\sqrt{61}\right)^{2}}{3^{2}} and \frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}} have the same denominator, add them by adding their numerators.
\frac{25-10\sqrt{61}+\left(\sqrt{61}\right)^{2}}{3^{2}}+\frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5+\sqrt{61}\right)^{2}.
\frac{25-10\sqrt{61}+61}{3^{2}}+\frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
The square of \sqrt{61} is 61.
\frac{86-10\sqrt{61}}{3^{2}}+\frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
Add 25 and 61 to get 86.
\frac{86-10\sqrt{61}}{9}+\frac{\left(-8-2\sqrt{61}\right)^{2}}{3^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{86-10\sqrt{61}}{9}+\frac{64+32\sqrt{61}+4\left(\sqrt{61}\right)^{2}}{3^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-8-2\sqrt{61}\right)^{2}.
\frac{86-10\sqrt{61}}{9}+\frac{64+32\sqrt{61}+4\times 61}{3^{2}}
The square of \sqrt{61} is 61.
\frac{86-10\sqrt{61}}{9}+\frac{64+32\sqrt{61}+244}{3^{2}}
Multiply 4 and 61 to get 244.
\frac{86-10\sqrt{61}}{9}+\frac{308+32\sqrt{61}}{3^{2}}
Add 64 and 244 to get 308.
\frac{86-10\sqrt{61}}{9}+\frac{308+32\sqrt{61}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{86-10\sqrt{61}+308+32\sqrt{61}}{9}
Since \frac{86-10\sqrt{61}}{9} and \frac{308+32\sqrt{61}}{9} have the same denominator, add them by adding their numerators.
\frac{394+22\sqrt{61}}{9}
Do the calculations in 86-10\sqrt{61}+308+32\sqrt{61}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}