Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(-10\right)^{2}x^{2}+4000x-9000=391000
Expand \left(-10x\right)^{2}.
100x^{2}+4000x-9000=391000
Calculate -10 to the power of 2 and get 100.
100x^{2}+4000x-9000-391000=0
Subtract 391000 from both sides.
100x^{2}+4000x-400000=0
Subtract 391000 from -9000 to get -400000.
x=\frac{-4000±\sqrt{4000^{2}-4\times 100\left(-400000\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 4000 for b, and -400000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4000±\sqrt{16000000-4\times 100\left(-400000\right)}}{2\times 100}
Square 4000.
x=\frac{-4000±\sqrt{16000000-400\left(-400000\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-4000±\sqrt{16000000+160000000}}{2\times 100}
Multiply -400 times -400000.
x=\frac{-4000±\sqrt{176000000}}{2\times 100}
Add 16000000 to 160000000.
x=\frac{-4000±4000\sqrt{11}}{2\times 100}
Take the square root of 176000000.
x=\frac{-4000±4000\sqrt{11}}{200}
Multiply 2 times 100.
x=\frac{4000\sqrt{11}-4000}{200}
Now solve the equation x=\frac{-4000±4000\sqrt{11}}{200} when ± is plus. Add -4000 to 4000\sqrt{11}.
x=20\sqrt{11}-20
Divide -4000+4000\sqrt{11} by 200.
x=\frac{-4000\sqrt{11}-4000}{200}
Now solve the equation x=\frac{-4000±4000\sqrt{11}}{200} when ± is minus. Subtract 4000\sqrt{11} from -4000.
x=-20\sqrt{11}-20
Divide -4000-4000\sqrt{11} by 200.
x=20\sqrt{11}-20 x=-20\sqrt{11}-20
The equation is now solved.
\left(-10\right)^{2}x^{2}+4000x-9000=391000
Expand \left(-10x\right)^{2}.
100x^{2}+4000x-9000=391000
Calculate -10 to the power of 2 and get 100.
100x^{2}+4000x=391000+9000
Add 9000 to both sides.
100x^{2}+4000x=400000
Add 391000 and 9000 to get 400000.
\frac{100x^{2}+4000x}{100}=\frac{400000}{100}
Divide both sides by 100.
x^{2}+\frac{4000}{100}x=\frac{400000}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+40x=\frac{400000}{100}
Divide 4000 by 100.
x^{2}+40x=4000
Divide 400000 by 100.
x^{2}+40x+20^{2}=4000+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=4000+400
Square 20.
x^{2}+40x+400=4400
Add 4000 to 400.
\left(x+20\right)^{2}=4400
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{4400}
Take the square root of both sides of the equation.
x+20=20\sqrt{11} x+20=-20\sqrt{11}
Simplify.
x=20\sqrt{11}-20 x=-20\sqrt{11}-20
Subtract 20 from both sides of the equation.