Solve for x
x=4\sqrt{230}-20\approx 40.663003552
x=-4\sqrt{230}-20\approx -80.663003552
Graph
Share
Copied to clipboard
\left(-10\right)^{2}x^{2}+4000x-9000=319000
Expand \left(-10x\right)^{2}.
100x^{2}+4000x-9000=319000
Calculate -10 to the power of 2 and get 100.
100x^{2}+4000x-9000-319000=0
Subtract 319000 from both sides.
100x^{2}+4000x-328000=0
Subtract 319000 from -9000 to get -328000.
x=\frac{-4000±\sqrt{4000^{2}-4\times 100\left(-328000\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 4000 for b, and -328000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4000±\sqrt{16000000-4\times 100\left(-328000\right)}}{2\times 100}
Square 4000.
x=\frac{-4000±\sqrt{16000000-400\left(-328000\right)}}{2\times 100}
Multiply -4 times 100.
x=\frac{-4000±\sqrt{16000000+131200000}}{2\times 100}
Multiply -400 times -328000.
x=\frac{-4000±\sqrt{147200000}}{2\times 100}
Add 16000000 to 131200000.
x=\frac{-4000±800\sqrt{230}}{2\times 100}
Take the square root of 147200000.
x=\frac{-4000±800\sqrt{230}}{200}
Multiply 2 times 100.
x=\frac{800\sqrt{230}-4000}{200}
Now solve the equation x=\frac{-4000±800\sqrt{230}}{200} when ± is plus. Add -4000 to 800\sqrt{230}.
x=4\sqrt{230}-20
Divide -4000+800\sqrt{230} by 200.
x=\frac{-800\sqrt{230}-4000}{200}
Now solve the equation x=\frac{-4000±800\sqrt{230}}{200} when ± is minus. Subtract 800\sqrt{230} from -4000.
x=-4\sqrt{230}-20
Divide -4000-800\sqrt{230} by 200.
x=4\sqrt{230}-20 x=-4\sqrt{230}-20
The equation is now solved.
\left(-10\right)^{2}x^{2}+4000x-9000=319000
Expand \left(-10x\right)^{2}.
100x^{2}+4000x-9000=319000
Calculate -10 to the power of 2 and get 100.
100x^{2}+4000x=319000+9000
Add 9000 to both sides.
100x^{2}+4000x=328000
Add 319000 and 9000 to get 328000.
\frac{100x^{2}+4000x}{100}=\frac{328000}{100}
Divide both sides by 100.
x^{2}+\frac{4000}{100}x=\frac{328000}{100}
Dividing by 100 undoes the multiplication by 100.
x^{2}+40x=\frac{328000}{100}
Divide 4000 by 100.
x^{2}+40x=3280
Divide 328000 by 100.
x^{2}+40x+20^{2}=3280+20^{2}
Divide 40, the coefficient of the x term, by 2 to get 20. Then add the square of 20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+40x+400=3280+400
Square 20.
x^{2}+40x+400=3680
Add 3280 to 400.
\left(x+20\right)^{2}=3680
Factor x^{2}+40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{3680}
Take the square root of both sides of the equation.
x+20=4\sqrt{230} x+20=-4\sqrt{230}
Simplify.
x=4\sqrt{230}-20 x=-4\sqrt{230}-20
Subtract 20 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}