Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

\left(-m^{2}+8m-3+m^{2}-35\right)^{2}=4
Combine -4m and 12m to get 8m.
\left(-m^{2}+8m-38+m^{2}\right)^{2}=4
Subtract 35 from -3 to get -38.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}-12m^{2}-76\left(-m^{2}\right)+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Square -m^{2}+8m-38+m^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}-12m^{2}+76m^{2}+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Multiply -76 and -1 to get 76.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Combine -12m^{2} and 76m^{2} to get 64m^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+\left(m^{2}\right)^{2}+1444=4
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+m^{4}+1444=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+1444=4
Combine m^{4} and m^{4} to get 2m^{4}.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+1444-4=0
Subtract 4 from both sides.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+1440=0
Subtract 4 from 1444 to get 1440.
2m^{4}+16m^{3}+2\left(-1\right)m^{4}+64m^{2}+16m\left(-1\right)m^{2}-608m+1440=0
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2m^{4}+16m^{3}-2m^{4}+64m^{2}+16m\left(-1\right)m^{2}-608m+1440=0
Multiply 2 and -1 to get -2.
16m^{3}+64m^{2}+16m\left(-1\right)m^{2}-608m+1440=0
Combine 2m^{4} and -2m^{4} to get 0.
16m^{3}+64m^{2}+16m^{3}\left(-1\right)-608m+1440=0
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
16m^{3}+64m^{2}-16m^{3}-608m+1440=0
Multiply 16 and -1 to get -16.
64m^{2}-608m+1440=0
Combine 16m^{3} and -16m^{3} to get 0.
m=\frac{-\left(-608\right)±\sqrt{\left(-608\right)^{2}-4\times 64\times 1440}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, -608 for b, and 1440 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-608\right)±\sqrt{369664-4\times 64\times 1440}}{2\times 64}
Square -608.
m=\frac{-\left(-608\right)±\sqrt{369664-256\times 1440}}{2\times 64}
Multiply -4 times 64.
m=\frac{-\left(-608\right)±\sqrt{369664-368640}}{2\times 64}
Multiply -256 times 1440.
m=\frac{-\left(-608\right)±\sqrt{1024}}{2\times 64}
Add 369664 to -368640.
m=\frac{-\left(-608\right)±32}{2\times 64}
Take the square root of 1024.
m=\frac{608±32}{2\times 64}
The opposite of -608 is 608.
m=\frac{608±32}{128}
Multiply 2 times 64.
m=\frac{640}{128}
Now solve the equation m=\frac{608±32}{128} when ± is plus. Add 608 to 32.
m=5
Divide 640 by 128.
m=\frac{576}{128}
Now solve the equation m=\frac{608±32}{128} when ± is minus. Subtract 32 from 608.
m=\frac{9}{2}
Reduce the fraction \frac{576}{128} to lowest terms by extracting and canceling out 64.
m=5 m=\frac{9}{2}
The equation is now solved.
\left(-m^{2}+8m-3+m^{2}-35\right)^{2}=4
Combine -4m and 12m to get 8m.
\left(-m^{2}+8m-38+m^{2}\right)^{2}=4
Subtract 35 from -3 to get -38.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}-12m^{2}-76\left(-m^{2}\right)+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Square -m^{2}+8m-38+m^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}-12m^{2}+76m^{2}+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Multiply -76 and -1 to get 76.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+\left(-m^{2}\right)^{2}+1444=4
Combine -12m^{2} and 76m^{2} to get 64m^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+\left(m^{2}\right)^{2}+1444=4
Calculate -m^{2} to the power of 2 and get \left(m^{2}\right)^{2}.
m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+m^{4}+1444=4
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m+1444=4
Combine m^{4} and m^{4} to get 2m^{4}.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m=4-1444
Subtract 1444 from both sides.
2m^{4}+16m^{3}+2\left(-m^{2}\right)m^{2}+64m^{2}+16m\left(-m^{2}\right)-608m=-1440
Subtract 1444 from 4 to get -1440.
2m^{4}+16m^{3}+2\left(-1\right)m^{4}+64m^{2}+16m\left(-1\right)m^{2}-608m=-1440
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
2m^{4}+16m^{3}-2m^{4}+64m^{2}+16m\left(-1\right)m^{2}-608m=-1440
Multiply 2 and -1 to get -2.
16m^{3}+64m^{2}+16m\left(-1\right)m^{2}-608m=-1440
Combine 2m^{4} and -2m^{4} to get 0.
16m^{3}+64m^{2}+16m^{3}\left(-1\right)-608m=-1440
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
16m^{3}+64m^{2}-16m^{3}-608m=-1440
Multiply 16 and -1 to get -16.
64m^{2}-608m=-1440
Combine 16m^{3} and -16m^{3} to get 0.
\frac{64m^{2}-608m}{64}=-\frac{1440}{64}
Divide both sides by 64.
m^{2}+\left(-\frac{608}{64}\right)m=-\frac{1440}{64}
Dividing by 64 undoes the multiplication by 64.
m^{2}-\frac{19}{2}m=-\frac{1440}{64}
Reduce the fraction \frac{-608}{64} to lowest terms by extracting and canceling out 32.
m^{2}-\frac{19}{2}m=-\frac{45}{2}
Reduce the fraction \frac{-1440}{64} to lowest terms by extracting and canceling out 32.
m^{2}-\frac{19}{2}m+\left(-\frac{19}{4}\right)^{2}=-\frac{45}{2}+\left(-\frac{19}{4}\right)^{2}
Divide -\frac{19}{2}, the coefficient of the x term, by 2 to get -\frac{19}{4}. Then add the square of -\frac{19}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{19}{2}m+\frac{361}{16}=-\frac{45}{2}+\frac{361}{16}
Square -\frac{19}{4} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{19}{2}m+\frac{361}{16}=\frac{1}{16}
Add -\frac{45}{2} to \frac{361}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{19}{4}\right)^{2}=\frac{1}{16}
Factor m^{2}-\frac{19}{2}m+\frac{361}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{19}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Take the square root of both sides of the equation.
m-\frac{19}{4}=\frac{1}{4} m-\frac{19}{4}=-\frac{1}{4}
Simplify.
m=5 m=\frac{9}{2}
Add \frac{19}{4} to both sides of the equation.