Evaluate
\frac{21}{2}=10.5
Factor
\frac{3 \cdot 7}{2} = 10\frac{1}{2} = 10.5
Share
Copied to clipboard
\left(-\frac{\sqrt{21}}{\sqrt{2}}\right)^{2}
Rewrite the square root of the division \sqrt{\frac{21}{2}} as the division of square roots \frac{\sqrt{21}}{\sqrt{2}}.
\left(-\frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(-\frac{\sqrt{21}\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\left(-\frac{\sqrt{42}}{2}\right)^{2}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\left(\frac{\sqrt{42}}{2}\right)^{2}
Calculate -\frac{\sqrt{42}}{2} to the power of 2 and get \left(\frac{\sqrt{42}}{2}\right)^{2}.
\frac{\left(\sqrt{42}\right)^{2}}{2^{2}}
To raise \frac{\sqrt{42}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{42}{2^{2}}
The square of \sqrt{42} is 42.
\frac{42}{4}
Calculate 2 to the power of 2 and get 4.
\frac{21}{2}
Reduce the fraction \frac{42}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}