Evaluate
-9n^{19}m^{33}
Expand
-9n^{19}m^{33}
Share
Copied to clipboard
\frac{\left(-3n^{2}m^{5}\right)^{5}}{27}m^{8}n^{9}
Cancel out n^{2} in both numerator and denominator.
\frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}}{27}n^{9}
Express \frac{\left(-3n^{2}m^{5}\right)^{5}}{27}m^{8} as a single fraction.
\frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}n^{9}}{27}
Express \frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}}{27}n^{9} as a single fraction.
\frac{\left(-3\right)^{5}\left(n^{2}\right)^{5}\left(m^{5}\right)^{5}m^{8}n^{9}}{27}
Expand \left(-3n^{2}m^{5}\right)^{5}.
\frac{\left(-3\right)^{5}n^{10}\left(m^{5}\right)^{5}m^{8}n^{9}}{27}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-3\right)^{5}n^{10}m^{25}m^{8}n^{9}}{27}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-243n^{10}m^{25}m^{8}n^{9}}{27}
Calculate -3 to the power of 5 and get -243.
\frac{-243n^{10}m^{33}n^{9}}{27}
To multiply powers of the same base, add their exponents. Add 25 and 8 to get 33.
\frac{-243n^{19}m^{33}}{27}
To multiply powers of the same base, add their exponents. Add 10 and 9 to get 19.
-9n^{19}m^{33}
Divide -243n^{19}m^{33} by 27 to get -9n^{19}m^{33}.
\frac{\left(-3n^{2}m^{5}\right)^{5}}{27}m^{8}n^{9}
Cancel out n^{2} in both numerator and denominator.
\frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}}{27}n^{9}
Express \frac{\left(-3n^{2}m^{5}\right)^{5}}{27}m^{8} as a single fraction.
\frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}n^{9}}{27}
Express \frac{\left(-3n^{2}m^{5}\right)^{5}m^{8}}{27}n^{9} as a single fraction.
\frac{\left(-3\right)^{5}\left(n^{2}\right)^{5}\left(m^{5}\right)^{5}m^{8}n^{9}}{27}
Expand \left(-3n^{2}m^{5}\right)^{5}.
\frac{\left(-3\right)^{5}n^{10}\left(m^{5}\right)^{5}m^{8}n^{9}}{27}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{\left(-3\right)^{5}n^{10}m^{25}m^{8}n^{9}}{27}
To raise a power to another power, multiply the exponents. Multiply 5 and 5 to get 25.
\frac{-243n^{10}m^{25}m^{8}n^{9}}{27}
Calculate -3 to the power of 5 and get -243.
\frac{-243n^{10}m^{33}n^{9}}{27}
To multiply powers of the same base, add their exponents. Add 25 and 8 to get 33.
\frac{-243n^{19}m^{33}}{27}
To multiply powers of the same base, add their exponents. Add 10 and 9 to get 19.
-9n^{19}m^{33}
Divide -243n^{19}m^{33} by 27 to get -9n^{19}m^{33}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}