Evaluate
\frac{101}{147}\approx 0.68707483
Factor
\frac{101}{3 \cdot 7 ^ {2}} = 0.6870748299319728
Share
Copied to clipboard
\frac{1}{49}-4\times \frac{2}{5}\left(-\frac{5}{12}\right)
Calculate -\frac{1}{7} to the power of 2 and get \frac{1}{49}.
\frac{1}{49}-\frac{4\times 2}{5}\left(-\frac{5}{12}\right)
Express 4\times \frac{2}{5} as a single fraction.
\frac{1}{49}-\frac{8}{5}\left(-\frac{5}{12}\right)
Multiply 4 and 2 to get 8.
\frac{1}{49}-\frac{8\left(-5\right)}{5\times 12}
Multiply \frac{8}{5} times -\frac{5}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{49}-\frac{-40}{60}
Do the multiplications in the fraction \frac{8\left(-5\right)}{5\times 12}.
\frac{1}{49}-\left(-\frac{2}{3}\right)
Reduce the fraction \frac{-40}{60} to lowest terms by extracting and canceling out 20.
\frac{1}{49}+\frac{2}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
\frac{3}{147}+\frac{98}{147}
Least common multiple of 49 and 3 is 147. Convert \frac{1}{49} and \frac{2}{3} to fractions with denominator 147.
\frac{3+98}{147}
Since \frac{3}{147} and \frac{98}{147} have the same denominator, add them by adding their numerators.
\frac{101}{147}
Add 3 and 98 to get 101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}