Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}y^{3}\left(-3xy^{3}\right)^{4}
Expand \left(-\frac{1}{3}x^{2}y\right)^{3}.
\left(-\frac{1}{3}\right)^{3}x^{6}y^{3}\left(-3xy^{3}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{27}x^{6}y^{3}\left(-3xy^{3}\right)^{4}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
-\frac{1}{27}x^{6}y^{3}\left(-3\right)^{4}x^{4}\left(y^{3}\right)^{4}
Expand \left(-3xy^{3}\right)^{4}.
-\frac{1}{27}x^{6}y^{3}\left(-3\right)^{4}x^{4}y^{12}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
-\frac{1}{27}x^{6}y^{3}\times 81x^{4}y^{12}
Calculate -3 to the power of 4 and get 81.
-3x^{6}y^{3}x^{4}y^{12}
Multiply -\frac{1}{27} and 81 to get -3.
-3x^{10}y^{3}y^{12}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
-3x^{10}y^{15}
To multiply powers of the same base, add their exponents. Add 3 and 12 to get 15.
\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}y^{3}\left(-3xy^{3}\right)^{4}
Expand \left(-\frac{1}{3}x^{2}y\right)^{3}.
\left(-\frac{1}{3}\right)^{3}x^{6}y^{3}\left(-3xy^{3}\right)^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
-\frac{1}{27}x^{6}y^{3}\left(-3xy^{3}\right)^{4}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
-\frac{1}{27}x^{6}y^{3}\left(-3\right)^{4}x^{4}\left(y^{3}\right)^{4}
Expand \left(-3xy^{3}\right)^{4}.
-\frac{1}{27}x^{6}y^{3}\left(-3\right)^{4}x^{4}y^{12}
To raise a power to another power, multiply the exponents. Multiply 3 and 4 to get 12.
-\frac{1}{27}x^{6}y^{3}\times 81x^{4}y^{12}
Calculate -3 to the power of 4 and get 81.
-3x^{6}y^{3}x^{4}y^{12}
Multiply -\frac{1}{27} and 81 to get -3.
-3x^{10}y^{3}y^{12}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
-3x^{10}y^{15}
To multiply powers of the same base, add their exponents. Add 3 and 12 to get 15.