Expand
x^{6}-6\sqrt{2}x^{5}+30x^{4}-40\sqrt{2}x^{3}+60x^{2}-24\sqrt{2}x+8
Evaluate
\left(x^{3}-3\sqrt{2}x^{2}+6x-2\sqrt{2}\right)^{2}
Graph
Share
Copied to clipboard
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+4\left(\sqrt{2}\right)^{2}
Square x^{3}-3\sqrt{2}x^{2}+6x-2\sqrt{2}.
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+4\times 2
The square of \sqrt{2} is 2.
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Multiply 4 and 2 to get 8.
\left(x^{3}\right)^{2}-6x^{3}\sqrt{2}x^{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{3}-3\sqrt{2}x^{2}\right)^{2}.
x^{6}-6x^{3}\sqrt{2}x^{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{6}-6x^{5}\sqrt{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
x^{6}-6x^{5}\sqrt{2}+9\left(\sqrt{2}\right)^{2}x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{6}-6x^{5}\sqrt{2}+9\times 2x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
The square of \sqrt{2} is 2.
x^{6}-6x^{5}\sqrt{2}+18x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Multiply 9 and 2 to get 18.
x^{6}-6x^{5}\sqrt{2}+18x^{4}+12x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Use the distributive property to multiply 12x by x^{3}-3\sqrt{2}x^{2}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Combine 18x^{4} and 12x^{4} to get 30x^{4}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+12x^{2}\left(\sqrt{2}\right)^{2}+36x^{2}-24\sqrt{2}x+8
Use the distributive property to multiply -4\sqrt{2} by x^{3}-3\sqrt{2}x^{2}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+12x^{2}\times 2+36x^{2}-24\sqrt{2}x+8
The square of \sqrt{2} is 2.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+24x^{2}+36x^{2}-24\sqrt{2}x+8
Multiply 12 and 2 to get 24.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-40\sqrt{2}x^{3}+24x^{2}+36x^{2}-24\sqrt{2}x+8
Combine -36\sqrt{2}x^{3} and -4\sqrt{2}x^{3} to get -40\sqrt{2}x^{3}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-40\sqrt{2}x^{3}+60x^{2}-24\sqrt{2}x+8
Combine 24x^{2} and 36x^{2} to get 60x^{2}.
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+4\left(\sqrt{2}\right)^{2}
Square x^{3}-3\sqrt{2}x^{2}+6x-2\sqrt{2}.
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+4\times 2
The square of \sqrt{2} is 2.
\left(x^{3}-3\sqrt{2}x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Multiply 4 and 2 to get 8.
\left(x^{3}\right)^{2}-6x^{3}\sqrt{2}x^{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{3}-3\sqrt{2}x^{2}\right)^{2}.
x^{6}-6x^{3}\sqrt{2}x^{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
x^{6}-6x^{5}\sqrt{2}+9\left(\sqrt{2}\right)^{2}\left(x^{2}\right)^{2}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To multiply powers of the same base, add their exponents. Add 3 and 2 to get 5.
x^{6}-6x^{5}\sqrt{2}+9\left(\sqrt{2}\right)^{2}x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{6}-6x^{5}\sqrt{2}+9\times 2x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
The square of \sqrt{2} is 2.
x^{6}-6x^{5}\sqrt{2}+18x^{4}+12x\left(x^{3}-3\sqrt{2}x^{2}\right)-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Multiply 9 and 2 to get 18.
x^{6}-6x^{5}\sqrt{2}+18x^{4}+12x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Use the distributive property to multiply 12x by x^{3}-3\sqrt{2}x^{2}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}\left(x^{3}-3\sqrt{2}x^{2}\right)+36x^{2}-24\sqrt{2}x+8
Combine 18x^{4} and 12x^{4} to get 30x^{4}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+12x^{2}\left(\sqrt{2}\right)^{2}+36x^{2}-24\sqrt{2}x+8
Use the distributive property to multiply -4\sqrt{2} by x^{3}-3\sqrt{2}x^{2}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+12x^{2}\times 2+36x^{2}-24\sqrt{2}x+8
The square of \sqrt{2} is 2.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-36\sqrt{2}x^{3}-4\sqrt{2}x^{3}+24x^{2}+36x^{2}-24\sqrt{2}x+8
Multiply 12 and 2 to get 24.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-40\sqrt{2}x^{3}+24x^{2}+36x^{2}-24\sqrt{2}x+8
Combine -36\sqrt{2}x^{3} and -4\sqrt{2}x^{3} to get -40\sqrt{2}x^{3}.
x^{6}-6x^{5}\sqrt{2}+30x^{4}-40\sqrt{2}x^{3}+60x^{2}-24\sqrt{2}x+8
Combine 24x^{2} and 36x^{2} to get 60x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}