Solve for x
x=-\frac{1}{3}\approx -0.333333333
x=1
Graph
Share
Copied to clipboard
\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x\right)^{2}.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use the distributive property to multiply 2x by x^{2}-1.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine -2x^{3} and 2x^{3} to get 0.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
Use the distributive property to multiply x^{2}-2x+1 by x^{2}+2x+1 and combine like terms.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
Subtract x^{4} from both sides.
x^{2}-2x=-2x^{2}+1
Combine x^{4} and -x^{4} to get 0.
x^{2}-2x+2x^{2}=1
Add 2x^{2} to both sides.
3x^{2}-2x=1
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-2x-1=0
Subtract 1 from both sides.
a+b=-2 ab=3\left(-1\right)=-3
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-1. To find a and b, set up a system to be solved.
a=-3 b=1
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(3x^{2}-3x\right)+\left(x-1\right)
Rewrite 3x^{2}-2x-1 as \left(3x^{2}-3x\right)+\left(x-1\right).
3x\left(x-1\right)+x-1
Factor out 3x in 3x^{2}-3x.
\left(x-1\right)\left(3x+1\right)
Factor out common term x-1 by using distributive property.
x=1 x=-\frac{1}{3}
To find equation solutions, solve x-1=0 and 3x+1=0.
\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x\right)^{2}.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use the distributive property to multiply 2x by x^{2}-1.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine -2x^{3} and 2x^{3} to get 0.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
Use the distributive property to multiply x^{2}-2x+1 by x^{2}+2x+1 and combine like terms.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
Subtract x^{4} from both sides.
x^{2}-2x=-2x^{2}+1
Combine x^{4} and -x^{4} to get 0.
x^{2}-2x+2x^{2}=1
Add 2x^{2} to both sides.
3x^{2}-2x=1
Combine x^{2} and 2x^{2} to get 3x^{2}.
3x^{2}-2x-1=0
Subtract 1 from both sides.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\left(-1\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\left(-1\right)}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\times 3}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\times 3}
Take the square root of 16.
x=\frac{2±4}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±4}{6}
Multiply 2 times 3.
x=\frac{6}{6}
Now solve the equation x=\frac{2±4}{6} when ± is plus. Add 2 to 4.
x=1
Divide 6 by 6.
x=-\frac{2}{6}
Now solve the equation x=\frac{2±4}{6} when ± is minus. Subtract 4 from 2.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=1 x=-\frac{1}{3}
The equation is now solved.
\left(x^{2}\right)^{2}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x^{2}-x\right)^{2}.
x^{4}-2x^{2}x+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}-2x^{3}+x^{2}+2x\left(x^{2}-1\right)=\left(x-1\right)^{2}\left(x+1\right)^{2}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}-2x^{3}+x^{2}+2x^{3}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Use the distributive property to multiply 2x by x^{2}-1.
x^{4}+x^{2}-2x=\left(x-1\right)^{2}\left(x+1\right)^{2}
Combine -2x^{3} and 2x^{3} to get 0.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x+1\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
x^{4}+x^{2}-2x=\left(x^{2}-2x+1\right)\left(x^{2}+2x+1\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+1\right)^{2}.
x^{4}+x^{2}-2x=x^{4}-2x^{2}+1
Use the distributive property to multiply x^{2}-2x+1 by x^{2}+2x+1 and combine like terms.
x^{4}+x^{2}-2x-x^{4}=-2x^{2}+1
Subtract x^{4} from both sides.
x^{2}-2x=-2x^{2}+1
Combine x^{4} and -x^{4} to get 0.
x^{2}-2x+2x^{2}=1
Add 2x^{2} to both sides.
3x^{2}-2x=1
Combine x^{2} and 2x^{2} to get 3x^{2}.
\frac{3x^{2}-2x}{3}=\frac{1}{3}
Divide both sides by 3.
x^{2}-\frac{2}{3}x=\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Add \frac{1}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=\frac{4}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{2}{3} x-\frac{1}{3}=-\frac{2}{3}
Simplify.
x=1 x=-\frac{1}{3}
Add \frac{1}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}