Solve for x
x=-6
x=1
x=-1
x=-4
Graph
Quiz
Polynomial
5 problems similar to:
{ \left( { x }^{ 2 } +5x \right) }^{ 2 } -2( { x }^{ 2 } +5x)=24
Share
Copied to clipboard
\left(x^{2}\right)^{2}+10x^{2}x+25x^{2}-2\left(x^{2}+5x\right)=24
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+5x\right)^{2}.
x^{4}+10x^{2}x+25x^{2}-2\left(x^{2}+5x\right)=24
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+10x^{3}+25x^{2}-2\left(x^{2}+5x\right)=24
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
x^{4}+10x^{3}+25x^{2}-2x^{2}-10x=24
Use the distributive property to multiply -2 by x^{2}+5x.
x^{4}+10x^{3}+23x^{2}-10x=24
Combine 25x^{2} and -2x^{2} to get 23x^{2}.
x^{4}+10x^{3}+23x^{2}-10x-24=0
Subtract 24 from both sides.
±24,±12,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -24 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}+11x^{2}+34x+24=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}+10x^{3}+23x^{2}-10x-24 by x-1 to get x^{3}+11x^{2}+34x+24. Solve the equation where the result equals to 0.
±24,±12,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 24 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+10x+24=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+11x^{2}+34x+24 by x+1 to get x^{2}+10x+24. Solve the equation where the result equals to 0.
x=\frac{-10±\sqrt{10^{2}-4\times 1\times 24}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 10 for b, and 24 for c in the quadratic formula.
x=\frac{-10±2}{2}
Do the calculations.
x=-6 x=-4
Solve the equation x^{2}+10x+24=0 when ± is plus and when ± is minus.
x=1 x=-1 x=-6 x=-4
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}