Solve for x (complex solution)
x=e^{\frac{2\pi i}{3}}\approx -0.5+0.866025404i
x=e^{\frac{5\pi i}{3}}\approx 0.5-0.866025404i
x=e^{\frac{4\pi i}{3}}\approx -0.5-0.866025404i
x=e^{\frac{\pi i}{3}}\approx 0.5+0.866025404i
Graph
Quiz
Quadratic Equation
5 problems similar to:
{ \left( { x }^{ 2 } +1 \right) }^{ 2 } - { x }^{ 2 } =0
Share
Copied to clipboard
\left(x^{2}\right)^{2}+2x^{2}+1-x^{2}=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1-x^{2}=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+x^{2}+1=0
Combine 2x^{2} and -x^{2} to get x^{2}.
t^{2}+t+1=0
Substitute t for x^{2}.
t=\frac{-1±\sqrt{1^{2}-4\times 1\times 1}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 1 for b, and 1 for c in the quadratic formula.
t=\frac{-1±\sqrt{-3}}{2}
Do the calculations.
t=\frac{-1+\sqrt{3}i}{2} t=\frac{-\sqrt{3}i-1}{2}
Solve the equation t=\frac{-1±\sqrt{-3}}{2} when ± is plus and when ± is minus.
x=-e^{\frac{\pi i}{3}} x=e^{\frac{\pi i}{3}} x=-ie^{\frac{\pi i}{6}} x=ie^{\frac{\pi i}{6}}
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}