Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x^{2}\right)^{2}+2x^{2}+1+6\left(x^{2}+1\right)+8=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{2}+1\right)^{2}.
x^{4}+2x^{2}+1+6\left(x^{2}+1\right)+8=0
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
x^{4}+2x^{2}+1+6x^{2}+6+8=0
Use the distributive property to multiply 6 by x^{2}+1.
x^{4}+8x^{2}+1+6+8=0
Combine 2x^{2} and 6x^{2} to get 8x^{2}.
x^{4}+8x^{2}+7+8=0
Add 1 and 6 to get 7.
x^{4}+8x^{2}+15=0
Add 7 and 8 to get 15.
t^{2}+8t+15=0
Substitute t for x^{2}.
t=\frac{-8±\sqrt{8^{2}-4\times 1\times 15}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 8 for b, and 15 for c in the quadratic formula.
t=\frac{-8±2}{2}
Do the calculations.
t=-3 t=-5
Solve the equation t=\frac{-8±2}{2} when ± is plus and when ± is minus.
x=-\sqrt{3}i x=\sqrt{3}i x=-\sqrt{5}i x=\sqrt{5}i
Since x=t^{2}, the solutions are obtained by evaluating x=±\sqrt{t} for each t.