Skip to main content
Solve for a_1 (complex solution)
Tick mark Image
Solve for a_1
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

a_{1}^{2}+8a_{1}x+16x^{2}=\left(a_{1}+x\right)\left(a_{1}+10x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+4x\right)^{2}.
a_{1}^{2}+8a_{1}x+16x^{2}=a_{1}^{2}+11a_{1}x+10x^{2}
Use the distributive property to multiply a_{1}+x by a_{1}+10x and combine like terms.
a_{1}^{2}+8a_{1}x+16x^{2}-a_{1}^{2}=11a_{1}x+10x^{2}
Subtract a_{1}^{2} from both sides.
8a_{1}x+16x^{2}=11a_{1}x+10x^{2}
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
8a_{1}x+16x^{2}-11a_{1}x=10x^{2}
Subtract 11a_{1}x from both sides.
-3a_{1}x+16x^{2}=10x^{2}
Combine 8a_{1}x and -11a_{1}x to get -3a_{1}x.
-3a_{1}x=10x^{2}-16x^{2}
Subtract 16x^{2} from both sides.
-3a_{1}x=-6x^{2}
Combine 10x^{2} and -16x^{2} to get -6x^{2}.
\left(-3x\right)a_{1}=-6x^{2}
The equation is in standard form.
\frac{\left(-3x\right)a_{1}}{-3x}=-\frac{6x^{2}}{-3x}
Divide both sides by -3x.
a_{1}=-\frac{6x^{2}}{-3x}
Dividing by -3x undoes the multiplication by -3x.
a_{1}=2x
Divide -6x^{2} by -3x.
a_{1}^{2}+8a_{1}x+16x^{2}=\left(a_{1}+x\right)\left(a_{1}+10x\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a_{1}+4x\right)^{2}.
a_{1}^{2}+8a_{1}x+16x^{2}=a_{1}^{2}+11a_{1}x+10x^{2}
Use the distributive property to multiply a_{1}+x by a_{1}+10x and combine like terms.
a_{1}^{2}+8a_{1}x+16x^{2}-a_{1}^{2}=11a_{1}x+10x^{2}
Subtract a_{1}^{2} from both sides.
8a_{1}x+16x^{2}=11a_{1}x+10x^{2}
Combine a_{1}^{2} and -a_{1}^{2} to get 0.
8a_{1}x+16x^{2}-11a_{1}x=10x^{2}
Subtract 11a_{1}x from both sides.
-3a_{1}x+16x^{2}=10x^{2}
Combine 8a_{1}x and -11a_{1}x to get -3a_{1}x.
-3a_{1}x=10x^{2}-16x^{2}
Subtract 16x^{2} from both sides.
-3a_{1}x=-6x^{2}
Combine 10x^{2} and -16x^{2} to get -6x^{2}.
\left(-3x\right)a_{1}=-6x^{2}
The equation is in standard form.
\frac{\left(-3x\right)a_{1}}{-3x}=-\frac{6x^{2}}{-3x}
Divide both sides by -3x.
a_{1}=-\frac{6x^{2}}{-3x}
Dividing by -3x undoes the multiplication by -3x.
a_{1}=2x
Divide -6x^{2} by -3x.