Evaluate
a^{84}
Expand
a^{84}
Share
Copied to clipboard
a^{-6}\times \left(\frac{\left(a^{4}\right)^{-6}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
a^{-6}\times \left(\frac{a^{-24}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply 4 and -6 to get -24.
a^{-6}\times \left(\frac{a^{-24}}{a^{-6}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
a^{-6}\times \left(\frac{1}{a^{18}}\right)^{-5}
Rewrite a^{-6} as a^{-24}a^{18}. Cancel out a^{-24} in both numerator and denominator.
a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}}
To raise \frac{1}{a^{18}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}\times 1^{-5}}{\left(a^{18}\right)^{-5}}
Express a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}} as a single fraction.
\frac{a^{-6}\times 1^{-5}}{a^{-90}}
To raise a power to another power, multiply the exponents. Multiply 18 and -5 to get -90.
1^{-5}a^{84}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
1a^{84}
Calculate 1 to the power of -5 and get 1.
a^{84}
For any term t, t\times 1=t and 1t=t.
a^{-6}\times \left(\frac{\left(a^{4}\right)^{-6}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
a^{-6}\times \left(\frac{a^{-24}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply 4 and -6 to get -24.
a^{-6}\times \left(\frac{a^{-24}}{a^{-6}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
a^{-6}\times \left(\frac{1}{a^{18}}\right)^{-5}
Rewrite a^{-6} as a^{-24}a^{18}. Cancel out a^{-24} in both numerator and denominator.
a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}}
To raise \frac{1}{a^{18}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}\times 1^{-5}}{\left(a^{18}\right)^{-5}}
Express a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}} as a single fraction.
\frac{a^{-6}\times 1^{-5}}{a^{-90}}
To raise a power to another power, multiply the exponents. Multiply 18 and -5 to get -90.
1^{-5}a^{84}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
1a^{84}
Calculate 1 to the power of -5 and get 1.
a^{84}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}