Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

a^{-6}\times \left(\frac{\left(a^{4}\right)^{-6}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
a^{-6}\times \left(\frac{a^{-24}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply 4 and -6 to get -24.
a^{-6}\times \left(\frac{a^{-24}}{a^{-6}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
a^{-6}\times \left(\frac{1}{a^{18}}\right)^{-5}
Rewrite a^{-6} as a^{-24}a^{18}. Cancel out a^{-24} in both numerator and denominator.
a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}}
To raise \frac{1}{a^{18}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}\times 1^{-5}}{\left(a^{18}\right)^{-5}}
Express a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}} as a single fraction.
\frac{a^{-6}\times 1^{-5}}{a^{-90}}
To raise a power to another power, multiply the exponents. Multiply 18 and -5 to get -90.
1^{-5}a^{84}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
1a^{84}
Calculate 1 to the power of -5 and get 1.
a^{84}
For any term t, t\times 1=t and 1t=t.
a^{-6}\times \left(\frac{\left(a^{4}\right)^{-6}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
a^{-6}\times \left(\frac{a^{-24}}{\left(a^{-2}\right)^{3}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply 4 and -6 to get -24.
a^{-6}\times \left(\frac{a^{-24}}{a^{-6}}\right)^{-5}
To raise a power to another power, multiply the exponents. Multiply -2 and 3 to get -6.
a^{-6}\times \left(\frac{1}{a^{18}}\right)^{-5}
Rewrite a^{-6} as a^{-24}a^{18}. Cancel out a^{-24} in both numerator and denominator.
a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}}
To raise \frac{1}{a^{18}} to a power, raise both numerator and denominator to the power and then divide.
\frac{a^{-6}\times 1^{-5}}{\left(a^{18}\right)^{-5}}
Express a^{-6}\times \frac{1^{-5}}{\left(a^{18}\right)^{-5}} as a single fraction.
\frac{a^{-6}\times 1^{-5}}{a^{-90}}
To raise a power to another power, multiply the exponents. Multiply 18 and -5 to get -90.
1^{-5}a^{84}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
1a^{84}
Calculate 1 to the power of -5 and get 1.
a^{84}
For any term t, t\times 1=t and 1t=t.