Verify
false
Share
Copied to clipboard
\left(2^{3}-2^{-3}\right)^{2}=2^{7}\times 2^{3}\times 2^{-3}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\left(2^{3}-2^{-3}\right)^{2}=2^{10}\times 2^{-3}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 7 and 3 to get 10.
\left(2^{3}-2^{-3}\right)^{2}=2^{7}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 10 and -3 to get 7.
\left(2^{3}-2^{-3}\right)^{2}=2^{7}+2^{-6}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(8-2^{-3}\right)^{2}=2^{7}+2^{-6}
Calculate 2 to the power of 3 and get 8.
\left(8-\frac{1}{8}\right)^{2}=2^{7}+2^{-6}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(\frac{63}{8}\right)^{2}=2^{7}+2^{-6}
Subtract \frac{1}{8} from 8 to get \frac{63}{8}.
\frac{3969}{64}=2^{7}+2^{-6}
Calculate \frac{63}{8} to the power of 2 and get \frac{3969}{64}.
\frac{3969}{64}=128+2^{-6}
Calculate 2 to the power of 7 and get 128.
\frac{3969}{64}=128+\frac{1}{64}
Calculate 2 to the power of -6 and get \frac{1}{64}.
\frac{3969}{64}=\frac{8193}{64}
Add 128 and \frac{1}{64} to get \frac{8193}{64}.
\text{false}
Compare \frac{3969}{64} and \frac{8193}{64}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}