Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\left(2^{3}-2^{-3}\right)^{2}=2^{7}\times 2^{3}\times 2^{-3}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 6 and 1 to get 7.
\left(2^{3}-2^{-3}\right)^{2}=2^{10}\times 2^{-3}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 7 and 3 to get 10.
\left(2^{3}-2^{-3}\right)^{2}=2^{7}+\left(2^{-3}\right)^{2}
To multiply powers of the same base, add their exponents. Add 10 and -3 to get 7.
\left(2^{3}-2^{-3}\right)^{2}=2^{7}+2^{-6}
To raise a power to another power, multiply the exponents. Multiply -3 and 2 to get -6.
\left(8-2^{-3}\right)^{2}=2^{7}+2^{-6}
Calculate 2 to the power of 3 and get 8.
\left(8-\frac{1}{8}\right)^{2}=2^{7}+2^{-6}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(\frac{63}{8}\right)^{2}=2^{7}+2^{-6}
Subtract \frac{1}{8} from 8 to get \frac{63}{8}.
\frac{3969}{64}=2^{7}+2^{-6}
Calculate \frac{63}{8} to the power of 2 and get \frac{3969}{64}.
\frac{3969}{64}=128+2^{-6}
Calculate 2 to the power of 7 and get 128.
\frac{3969}{64}=128+\frac{1}{64}
Calculate 2 to the power of -6 and get \frac{1}{64}.
\frac{3969}{64}=\frac{8193}{64}
Add 128 and \frac{1}{64} to get \frac{8193}{64}.
\text{false}
Compare \frac{3969}{64} and \frac{8193}{64}.