Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}+4^{-1}+6^{-1}+8^{-1}\right)^{x}=1
Calculate 2 to the power of -1 and get \frac{1}{2}.
\left(\frac{1}{2}+\frac{1}{4}+6^{-1}+8^{-1}\right)^{x}=1
Calculate 4 to the power of -1 and get \frac{1}{4}.
\left(\frac{3}{4}+6^{-1}+8^{-1}\right)^{x}=1
Add \frac{1}{2} and \frac{1}{4} to get \frac{3}{4}.
\left(\frac{3}{4}+\frac{1}{6}+8^{-1}\right)^{x}=1
Calculate 6 to the power of -1 and get \frac{1}{6}.
\left(\frac{11}{12}+8^{-1}\right)^{x}=1
Add \frac{3}{4} and \frac{1}{6} to get \frac{11}{12}.
\left(\frac{11}{12}+\frac{1}{8}\right)^{x}=1
Calculate 8 to the power of -1 and get \frac{1}{8}.
\left(\frac{25}{24}\right)^{x}=1
Add \frac{11}{12} and \frac{1}{8} to get \frac{25}{24}.
\log(\left(\frac{25}{24}\right)^{x})=\log(1)
Take the logarithm of both sides of the equation.
x\log(\frac{25}{24})=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(1)}{\log(\frac{25}{24})}
Divide both sides by \log(\frac{25}{24}).
x=\log_{\frac{25}{24}}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).