Solve for x
x=0
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(\frac{25}{24})}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(\frac{1}{2}+4^{-1}+6^{-1}+8^{-1}\right)^{x}=1
Calculate 2 to the power of -1 and get \frac{1}{2}.
\left(\frac{1}{2}+\frac{1}{4}+6^{-1}+8^{-1}\right)^{x}=1
Calculate 4 to the power of -1 and get \frac{1}{4}.
\left(\frac{3}{4}+6^{-1}+8^{-1}\right)^{x}=1
Add \frac{1}{2} and \frac{1}{4} to get \frac{3}{4}.
\left(\frac{3}{4}+\frac{1}{6}+8^{-1}\right)^{x}=1
Calculate 6 to the power of -1 and get \frac{1}{6}.
\left(\frac{11}{12}+8^{-1}\right)^{x}=1
Add \frac{3}{4} and \frac{1}{6} to get \frac{11}{12}.
\left(\frac{11}{12}+\frac{1}{8}\right)^{x}=1
Calculate 8 to the power of -1 and get \frac{1}{8}.
\left(\frac{25}{24}\right)^{x}=1
Add \frac{11}{12} and \frac{1}{8} to get \frac{25}{24}.
\log(\left(\frac{25}{24}\right)^{x})=\log(1)
Take the logarithm of both sides of the equation.
x\log(\frac{25}{24})=\log(1)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(1)}{\log(\frac{25}{24})}
Divide both sides by \log(\frac{25}{24}).
x=\log_{\frac{25}{24}}\left(1\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}