{ \left( { \left( \frac{ { \left(2- \frac{ \frac{ 3 }{ 9 } }{ 3 } \right) }^{ -2 } }{ { \left( \frac{ 9 }{ 4 } \right) }^{ 2 } \frac{ { 2 }^{ -1 } }{ 5 } } \right) }^{ } \right) }^{ -1 }
Evaluate
\frac{289}{160}=1.80625
Factor
\frac{17 ^ {2}}{2 ^ {5} \cdot 5} = 1\frac{129}{160} = 1.80625
Share
Copied to clipboard
\left(\left(\frac{\left(2-\frac{3}{9\times 3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Express \frac{\frac{3}{9}}{3} as a single fraction.
\left(\left(\frac{\left(2-\frac{3}{27}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Multiply 9 and 3 to get 27.
\left(\left(\frac{\left(2-\frac{1}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Reduce the fraction \frac{3}{27} to lowest terms by extracting and canceling out 3.
\left(\left(\frac{\left(\frac{17}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Subtract \frac{1}{9} from 2 to get \frac{17}{9}.
\left(\left(\frac{\frac{81}{289}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Calculate \frac{17}{9} to the power of -2 and get \frac{81}{289}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Calculate \frac{9}{4} to the power of 2 and get \frac{81}{16}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{\frac{1}{2}}{5}}\right)^{1}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{1}{2\times 5}}\right)^{1}\right)^{-1}
Express \frac{\frac{1}{2}}{5} as a single fraction.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{1}{10}}\right)^{1}\right)^{-1}
Multiply 2 and 5 to get 10.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{160}}\right)^{1}\right)^{-1}
Multiply \frac{81}{16} and \frac{1}{10} to get \frac{81}{160}.
\left(\left(\frac{81}{289}\times \frac{160}{81}\right)^{1}\right)^{-1}
Divide \frac{81}{289} by \frac{81}{160} by multiplying \frac{81}{289} by the reciprocal of \frac{81}{160}.
\left(\left(\frac{160}{289}\right)^{1}\right)^{-1}
Multiply \frac{81}{289} and \frac{160}{81} to get \frac{160}{289}.
\left(\frac{160}{289}\right)^{-1}
Calculate \frac{160}{289} to the power of 1 and get \frac{160}{289}.
\frac{289}{160}
Calculate \frac{160}{289} to the power of -1 and get \frac{289}{160}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}