Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\left(\frac{\left(2-\frac{3}{9\times 3}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Express \frac{\frac{3}{9}}{3} as a single fraction.
\left(\left(\frac{\left(2-\frac{3}{27}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Multiply 9 and 3 to get 27.
\left(\left(\frac{\left(2-\frac{1}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Reduce the fraction \frac{3}{27} to lowest terms by extracting and canceling out 3.
\left(\left(\frac{\left(\frac{17}{9}\right)^{-2}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Subtract \frac{1}{9} from 2 to get \frac{17}{9}.
\left(\left(\frac{\frac{81}{289}}{\left(\frac{9}{4}\right)^{2}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Calculate \frac{17}{9} to the power of -2 and get \frac{81}{289}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{2^{-1}}{5}}\right)^{1}\right)^{-1}
Calculate \frac{9}{4} to the power of 2 and get \frac{81}{16}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{\frac{1}{2}}{5}}\right)^{1}\right)^{-1}
Calculate 2 to the power of -1 and get \frac{1}{2}.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{1}{2\times 5}}\right)^{1}\right)^{-1}
Express \frac{\frac{1}{2}}{5} as a single fraction.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{16}\times \frac{1}{10}}\right)^{1}\right)^{-1}
Multiply 2 and 5 to get 10.
\left(\left(\frac{\frac{81}{289}}{\frac{81}{160}}\right)^{1}\right)^{-1}
Multiply \frac{81}{16} and \frac{1}{10} to get \frac{81}{160}.
\left(\left(\frac{81}{289}\times \frac{160}{81}\right)^{1}\right)^{-1}
Divide \frac{81}{289} by \frac{81}{160} by multiplying \frac{81}{289} by the reciprocal of \frac{81}{160}.
\left(\left(\frac{160}{289}\right)^{1}\right)^{-1}
Multiply \frac{81}{289} and \frac{160}{81} to get \frac{160}{289}.
\left(\frac{160}{289}\right)^{-1}
Calculate \frac{160}{289} to the power of 1 and get \frac{160}{289}.
\frac{289}{160}
Calculate \frac{160}{289} to the power of -1 and get \frac{289}{160}.