Evaluate
30\sqrt{6}-12\approx 61.484692283
Expand
30 \sqrt{6} - 12 = 61.484692283
Share
Copied to clipboard
\left(3\times 3\right)^{2}-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Calculate the square root of 9 and get 3.
9^{2}-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Multiply 3 and 3 to get 9.
81-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Calculate 9 to the power of 2 and get 81.
81-\left(9\left(\sqrt{2}\right)^{2}-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-5\sqrt{3}\right)^{2}.
81-\left(9\times 2-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{2} is 2.
81-\left(18-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
Multiply 9 and 2 to get 18.
81-\left(18-30\sqrt{6}+25\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
81-\left(18-30\sqrt{6}+25\times 3\right)
The square of \sqrt{3} is 3.
81-\left(18-30\sqrt{6}+75\right)
Multiply 25 and 3 to get 75.
81-\left(93-30\sqrt{6}\right)
Add 18 and 75 to get 93.
81-93+30\sqrt{6}
To find the opposite of 93-30\sqrt{6}, find the opposite of each term.
-12+30\sqrt{6}
Subtract 93 from 81 to get -12.
\left(3\times 3\right)^{2}-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Calculate the square root of 9 and get 3.
9^{2}-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Multiply 3 and 3 to get 9.
81-\left(3\sqrt{2}-5\sqrt{3}\right)^{2}
Calculate 9 to the power of 2 and get 81.
81-\left(9\left(\sqrt{2}\right)^{2}-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{2}-5\sqrt{3}\right)^{2}.
81-\left(9\times 2-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{2} is 2.
81-\left(18-30\sqrt{2}\sqrt{3}+25\left(\sqrt{3}\right)^{2}\right)
Multiply 9 and 2 to get 18.
81-\left(18-30\sqrt{6}+25\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
81-\left(18-30\sqrt{6}+25\times 3\right)
The square of \sqrt{3} is 3.
81-\left(18-30\sqrt{6}+75\right)
Multiply 25 and 3 to get 75.
81-\left(93-30\sqrt{6}\right)
Add 18 and 75 to get 93.
81-93+30\sqrt{6}
To find the opposite of 93-30\sqrt{6}, find the opposite of each term.
-12+30\sqrt{6}
Subtract 93 from 81 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}